Degenerations of special holonomy metrics

Lorenzo Foscolo

Heriot-Watt University

Géométrie: échanges et perspectives, Institut Henri Poincaré, February 162018

Special holonomy

10.92 Corollary. Let (M, g) be a Riemannian manifold of dimension n which is not locally symmetric and whose holonomy representation Hol° is irreducible. Then its holonomy representation Hol° is one of the following:

$$
\begin{aligned}
& \text { (I) } \mathrm{Hol}^{\mathrm{o}}=S O(n) \\
& \text { (II) } n=2 m \text { and } \mathrm{Hol}^{\mathrm{o}}=U(m) \quad(m \geqslant 2) \\
& \text { (III) } n=2 m \text { and } \mathrm{Hol}^{\mathrm{o}}=S U(m) \quad(m \geqslant 2) \\
& \text { (IV) } n=4 m \text { and } \mathrm{Hol}^{\mathrm{o}}=S p(1) \cdot S p(m) \quad(m \geqslant 2) \\
& \text { (V) } n=4 m \text { and } \mathrm{Hol}^{\mathrm{o}}=S p(m) \quad(m \geqslant 2) \\
& \text { (VI) } \quad \text { (VII) } n=8 \text { and } \mathrm{Hol}^{\circ}=\operatorname{Spin}(7) \\
& \text { (VIII) } n=7 \text { and } \mathrm{Hol}^{0}=G_{2} .
\end{aligned}
$$

Hyperkähler 4-manifolds

- A Riemannian 4-manifold $\left(M^{4}, g\right)$ is hyperkähler if $\operatorname{Hol}(g) \subseteq \operatorname{SU}(2)$.
- hyperkähler triple: $\underline{\boldsymbol{\omega}}=\left(\omega_{1}, \omega_{2}, \omega_{3}\right)$ 2-forms on M such that

$$
d \omega_{i}=0, \quad \frac{1}{2} \omega_{i} \wedge \omega_{j}=\delta_{i j} \omega_{1}^{2}
$$

- Hyperkähler 4-manifolds are Kähler Ricci-flat:
$\square \omega_{c}=\omega_{2}+i \omega_{3}, \omega_{c} \wedge \omega_{c}=0, \omega_{c} \wedge \bar{\omega}_{c}>0 \rightsquigarrow$ complex structure J
\square Kähler form $\omega=\omega_{1}\left(\omega \wedge \omega_{c}=0, d \omega=0\right)$ with vanishing Ricci-form

$$
\omega^{2}=\frac{1}{2} \omega_{c} \wedge \bar{\omega}_{c}
$$

- The (smooth 4-manifold underlying a complex) K3 surface
\square every Einstein metrics on the K3 surface is hyperkähler

$$
\frac{1}{2 \pi^{2}} \int_{M} \frac{1}{48} \text { Scal }^{2}+\left|W_{+}\right|^{2}=2 \chi+3 \tau=0, \quad \triangle_{\Lambda^{+}}=\nabla^{*} \nabla-2 W_{+}+\frac{1}{3} \text { Scal }
$$

\square Period map

$$
\mathcal{P}: \mathcal{M} \longrightarrow \operatorname{Gr}^{+}(3,19) / \operatorname{Aut}\left(\mathrm{H}^{2}(K 3, \mathbb{Z})\right), \quad g_{\underline{\omega}} \longmapsto \operatorname{span}([\underline{\omega}])
$$

Non-collapsed limits

Theorem (Nakajima 1988, Bando-Kasue-Nakajima 1989, Anderson 1990)
Fix $\Lambda, C, V, D>0$ and let $\left(M_{i}^{4}, g_{i}\right)$ be a sequence of Einstein
4-manifolds satisfying

1. $\left|\operatorname{Ric}\left(g_{i}\right)\right| \leq \Lambda$,
2. $\chi\left(M_{i}\right) \leq C$,
3. $\operatorname{Vol}\left(M_{i}, g_{i}\right) \geq V$,
4. $\operatorname{diam}\left(M_{i}, g_{i}\right) \leq D$.

Then a subsequence converges to an Einstein orbifold $\left(M_{\infty}, g_{\infty}\right)$ with a definite number of isolated singular points.

Non-collapsed limits

Theorem (Nakajima 1988, Bando-Kasue-Nakajima 1989, Anderson 1990)
Fix $\Lambda, C, V, D>0$ and let $\left(M_{i}^{4}, g_{i}\right)$ be a sequence of Einstein
4-manifolds satisfying

1. $\left|\operatorname{Ric}\left(g_{i}\right)\right| \leq \Lambda$,
2. $\chi\left(M_{i}\right) \leq C$,
3. $\operatorname{Vol}\left(M_{i}, g_{i}\right) \geq V$,
4. $\operatorname{diam}\left(M_{i}, g_{i}\right) \leq D$.

Then a subsequence converges to an Einstein orbifold $\left(M_{\infty}, g_{\infty}\right)$ with a definite number of isolated singular points.

■ non-collapsing: $\operatorname{Vol}_{g_{i}}\left(B_{1}(p)\right) \geq v>0$ for all $p \in M_{i}$

- finite energy: $\left\|\mathrm{Rm}_{g_{i}}\right\|_{L^{2}} \leq C$

$$
8 \pi^{2} \chi(M)=\int_{M} \frac{1}{24} \text { Scal }{ }^{2}+|W|^{2}-\frac{1}{2}\left|\mathrm{Ric}^{\circ}\right|^{2}
$$

Non-collapsed limits

Theorem (continued)
$\left(M_{i}^{4}, g_{i}\right) \xrightarrow{G H}\left(M_{\infty}, g_{\infty}\right)$ Einstein orbifold
For each singular point $x \in M_{\infty}$ one can find $x_{i} \in M_{i}$ and $r_{i} \rightarrow \infty$ such that, up to subsequences, $x_{i} \rightarrow x$ and ($M_{i}, r_{i}^{2} g_{i}, x_{i}$) converges to a Ricci-flat ALE 4-manifold (W, h, x_{∞}) of rate $\nu=-4$.

- 「 $\subset \mathrm{SO}(4)$ finite, acting freely on $\mathbb{R}^{4} \backslash\{0\}$
- $f:\left(\mathbb{R}^{4} \backslash B_{R}\right) / \Gamma \rightarrow W \backslash K$

$$
\left|\nabla^{k}\left(f^{*} h-h_{\mathbb{R}^{4} / \Gamma}\right)\right|=O\left(r^{\nu-k}\right)
$$

- Bando (1990), Anderson-Cheeger (1991): "bubble-tree" of ALE orbifolds

ALE gravitational instantons

■ gravitational instanton: complete hyperkähler 4-manifold with decaying curvature
\square finite energy: $\|\mathrm{Rm}\|_{L^{2}}<\infty$
\square faster than quadratic curvature decay: $|\mathrm{Rm}|=O\left(r^{-2-\delta}\right), \delta>0$
■ volume growth: $c r \leq \operatorname{Vol}\left(B_{r}\right) \leq C r^{4}$

- Bando-Kasue-Nakajima (1989): complete Ricci-flat $d=4+$ finite energy + maximal volume growth \Longrightarrow ALE of rate -4

ALE gravitational instantons

■ gravitational instanton: complete hyperkähler 4-manifold with decaying curvature
\square finite energy: $\|R m\|_{L^{2}}<\infty$
\square faster than quadratic curvature decay: $|\mathrm{Rm}|=O\left(r^{-2-\delta}\right), \delta>0$
■ volume growth: $c r \leq \operatorname{Vol}\left(B_{r}\right) \leq C r^{4}$

- Bando-Kasue-Nakajima (1989): complete Ricci-flat $d=4+$ finite energy + maximal volume growth \Longrightarrow ALE of rate -4
- Eguchi-Hanson metric on $T^{*} S^{2}=\mathcal{O}_{\mathbb{P}^{1}}(-2)$ (1978)

$$
\varphi_{t}=\sqrt{r^{4}+t^{4}}+2 t^{2} \log r-t^{2} \log \left(\sqrt{r^{4}+t^{4}}+t^{2}\right)
$$

ALE gravitational instantons

■ gravitational instanton: complete hyperkähler 4-manifold with decaying curvature
\square finite energy: $\|R m\|_{L^{2}}<\infty$
\square faster than quadratic curvature decay: $|\mathrm{Rm}|=O\left(r^{-2-\delta}\right), \delta>0$
■ volume growth: $c r \leq \operatorname{Vol}\left(B_{r}\right) \leq C r^{4}$

- Bando-Kasue-Nakajima (1989): complete Ricci-flat $d=4+$ finite energy + maximal volume growth \Longrightarrow ALE of rate -4
- Eguchi-Hanson metric on $T^{*} S^{2}=\mathcal{O}_{\mathbb{P}^{1}}(-2)$ (1978)

$$
\varphi_{t}=\sqrt{r^{4}+t^{4}}+2 t^{2} \log r-t^{2} \log \left(\sqrt{r^{4}+t^{4}}+t^{2}\right)
$$

- Kronheimer (1989)
$\square \Gamma$ finite group of $\operatorname{SU}(2)$ that acts freely on $\mathbb{C}^{2} \backslash\{0\}$
$\square X_{\Gamma}$ smooth 4-manifold underlying minimal resolution of \mathbb{C}^{2} / Γ
$\square[\underline{\omega}](\Sigma) \neq \underline{\mathbf{0}} \in \mathbb{R}^{3}$ for all $\Sigma \in H_{2}\left(X_{\Gamma}, \mathbb{Z}\right), \Sigma \cdot \Sigma=-2$

The Kummer construction

Gibbons-Pope 1979, LeBrun-Singer 1994, Donaldson 2012

Building blocks:

- A background metric to model the region where curvature stays bounded Flat orbifold T^{4} / \mathbb{Z}_{2}; cut-out neighbourhoods of the 16 orbifold singularities
- Non-compact "bubbles" to model the geometry of high curvature regions Eguchi-Hanson ALE metric on $T^{*} S^{2}$

Gluing:

- Use the building blocks to construct an approximate solution.
- Use analysis to perturb to an exact Ricci-flat metric.

The Kummer construction

- Complex Monge-Ampère equation
\square construct complex structure by blow-up: ω_{c}
\square solve $(\omega+i \partial \bar{\partial} u)^{2}=\frac{1}{2} \omega_{c} \wedge \bar{\omega}_{c}$ using the Implicit Function Theorem
- Gluing hyperkähler triples
\square choice of gauge $\mathrm{SO}(4) / \mathrm{U}(2) \simeq S^{2}$ at each singular point
\square gluing \rightsquigarrow closed approximately hyperkähler triple $\underline{\omega}_{t}$

$$
\omega_{i} \wedge \omega_{j}=Q_{i j} \omega_{1}^{2}, \quad Q=\mathrm{id}+O\left(t^{2}\right)
$$

\square perturb $\underline{\omega}_{t} \mapsto \underline{\omega}_{t}+d \underline{\mathbf{a}}+\underline{\boldsymbol{\zeta}}, \underline{\mathbf{a}} \in \Omega^{1}, \underline{\boldsymbol{\zeta}} \in \mathcal{H}^{+} \otimes \mathbb{R}^{3}$,

$$
d^{+} \underline{\mathbf{a}}+\underline{\boldsymbol{\zeta}}=\mathcal{F}\left(Q-\mathrm{id}+d^{-} \underline{\mathbf{a}} * d^{-} \underline{\mathbf{a}}\right), \quad d^{*} \underline{\mathbf{a}}=0
$$

\square parameter count: $58=10+16 \times 3$

Higher dimensions

- codimension 4 orbifold singularities
\square Codimension 4 Conjecture: Cheeger-Naber (2015), Cheeger (2003), Cheeger-Tian (2005)
\square Joyce's construction of G_{2} and Spin_{7} manifolds by desingularising T^{d} / Γ (1996)
- isolated conical singularities
\square Riemannian cones with special holonomy (Sasaki-Einstein, 3-Sasakian, nearly Kähler manifolds,...)
\square deformation and smoothing theory (Joyce, Chan, Karigiannis, Karigiannis-Lotay), AC Calabi-Yau manifolds (Joyce, vanCoevering, Goto, Conlon-Hein)
\square Hein-Sun (2017): existence of Calabi-Yau manifolds with isolated conical singularities

Collapse

- $\left(M^{4}, g_{i}\right), \operatorname{Ric}\left(g_{i}\right)=0, \operatorname{Vol}\left(g_{i}\right)=1, \operatorname{diam}\left(g_{i}\right) \rightarrow \infty$

Collapse

- $\left(M^{4}, g_{i}\right), \operatorname{Ric}\left(g_{i}\right)=0, \operatorname{Vol}\left(g_{i}\right)=1, \operatorname{diam}\left(g_{i}\right) \rightarrow \infty$
- Anderson (1992)

Theorem III below.) Thus, suppose that for all $x \in M$,

$$
\begin{equation*}
\operatorname{vol}_{g_{i}}\left(B_{x}(1)\right) \rightarrow 0, \quad \text { as } i \rightarrow \infty . \tag{5.2}
\end{equation*}
$$

In this case, we have the following result. Recall that a sequence of Riemannian manifolds (X_{i}, g_{i}) collapses, in the sense of Cheeger-Gromov [15], if

$$
\begin{align*}
& \operatorname{inj}_{i}(x) \rightarrow 0, \quad \text { as } i \rightarrow \infty, \text { and } \tag{5.3}\\
& \operatorname{inj}_{i}(x)^{2} \cdot\left|R_{i}\right|(x) \leq \varepsilon_{0},
\end{align*}
$$

for any $x \in X_{i}$. Here $\operatorname{inj}_{i}(x)$ is the injectivity radius of $\left(X_{i}, g_{i}\right)$ at x, while ε_{0} is a small absolute constant (the Cheeger-Gromov constant).

THEOREM 5.1. If $\left\{g_{i}\right\}$ is a sequence of Einstein metrics on M, of volume 1, satisfying (5.2), then $\left\{g_{i}\right\}$ collapses, in the sense of Cheeger-Gromov, metrically on the complement of finitely many points $\left\{z_{k}\right\} \in M$.

Collapse

- $\left(M^{4}, g_{i}\right), \operatorname{Ric}\left(g_{i}\right)=0, \operatorname{Vol}\left(g_{i}\right)=1, \operatorname{diam}\left(g_{i}\right) \rightarrow \infty$
- Anderson (1992)

Theorem III below.) Thus, suppose that for all $x \in M$,

$$
\begin{equation*}
\operatorname{vol}_{g_{i}}\left(B_{x}(1)\right) \rightarrow 0, \quad \text { as } i \rightarrow \infty . \tag{5.2}
\end{equation*}
$$

In this case, we have the following result. Recall that a sequence of Riemannian manifolds (X_{i}, g_{i}) collapses, in the sense of Cheeger-Gromov [15], if

$$
\begin{align*}
& \operatorname{inj}_{i}(x) \rightarrow 0, \quad \text { as } i \rightarrow \infty, \text { and } \tag{5.3}\\
& \operatorname{inj}_{i}(x)^{2} \cdot\left|R_{i}\right|(x) \leq \varepsilon_{0},
\end{align*}
$$

for any $x \in X_{i}$. Here $\operatorname{inj}_{i}(x)$ is the injectivity radius of $\left(X_{i}, g_{i}\right)$ at x, while ε_{0} is a small absolute constant (the Cheeger-Gromov constant).

THEOREM 5.1. If $\left\{g_{i}\right\}$ is a sequence of Einstein metrics on M, of volume 1, satisfying (5.2), then $\left\{g_{i}\right\}$ collapses, in the sense of Cheeger-Gromov, metrically on the complement of finitely many points $\left\{z_{k}\right\} \in M$.

- Cheeger-Tian (2006): bounded curvature outside finitely many points

Theorem 0.1 (Collapse implies L_{2} concentration of curvature). There exists $v>0$, β, c, such that the following holds. Let M^{4} denote a complete Einstein 4-manifold satisfying

$$
\begin{gather*}
|\lambda| \leq 3 \tag{0.2}\\
\int_{M^{4}}|R|^{2} \leq C \tag{0.3}
\end{gather*}
$$

and for all p and some $s \leq 1$,

$$
\begin{equation*}
\frac{\operatorname{Vol}\left(B_{s}(p)\right)}{s^{4}} \leq v \tag{0.4}
\end{equation*}
$$

Then there exist p_{1}, \ldots, p_{N}, with

$$
\begin{equation*}
N \leq \beta \cdot C \tag{0.5}
\end{equation*}
$$

such that

$$
\begin{equation*}
\int_{M^{4} \backslash\left(\mathrm{U}_{i} B_{s}\left(p_{i}\right)\right)}|R|^{2} \leq c \cdot\left(\sum_{i} \frac{\operatorname{Vol}\left(B_{s}\left(p_{i}\right)\right)}{s^{4}}+\lim _{r \rightarrow \infty} \frac{\operatorname{Vol}\left(B_{r}(p)\right)}{r^{4}}\right) \tag{0.6}
\end{equation*}
$$

Theorem 0.8 (ϵ-regularity). There exists $\epsilon>0, c$, such that the following holds. Let M^{4} denote an Einstein 4-manifold satisfying (0.2) and let $r \leq 1$. If $B_{s}(p)$ has compact closure for all $s \leq r$ and

$$
\begin{equation*}
\int_{B_{r}(p)}|R|^{2} \leq \epsilon \tag{0.9}
\end{equation*}
$$

then

$$
\begin{equation*}
\sup _{B_{\frac{1}{2} r}(p)}|R| \leq c \cdot r^{-2} \tag{0.10}
\end{equation*}
$$

Collapse

- Anderson (1992): Cheeger-Gromov collapse outside finitely many points
- Cheeger-Tian (2006): bounded curvature outside finetely many points
- Cheeger-Fukaya-Gromov (1992): collapse with bounded curvature
- locally: $3 r \in\left(0,\left\|R m_{g_{i}}\right\|_{L^{\infty}}^{-\frac{1}{2}}\right)$
$\square\left(B_{3 r}(0) \subset T_{p_{i}} M_{i} \simeq \mathbb{R}^{n}, \exp _{p_{i}}^{*} g_{i}\right) \xrightarrow{C^{\infty}}\left(B_{3 r}(0), \hat{g}_{\infty}\right)$
\square local pseudo-group of isometries Γ_{i} of $\left(B_{r}(0), \exp _{p_{i}}^{*} g_{i}\right): x \sim_{r_{i}} y \Longleftrightarrow$ $\exp _{p_{i}}(x)=\exp _{p_{i}}(y) \in M_{i}$
$\square \Gamma_{i} \rightarrow \Gamma_{\infty}$ pseudo-group of isometries of ($\left.B_{r}(0), \hat{g}_{\infty}\right)$ with neighbourhood of 1 isomorphic to neighbourhood of 1 in nilpotent Lie group
$\square\left(B_{r}\left(p_{i}\right) \subset M_{i}, g_{i}\right) \xrightarrow{G H}\left(B_{r}(0), \hat{g}_{\infty}\right) / \Gamma_{\infty}$

Collapse

- Anderson (1992): Cheeger-Gromov collapse outside finitely many points
- Cheeger-Tian (2006): bounded curvature outside finetely many points
- Cheeger-Fukaya-Gromov (1992): collapse with bounded curvature
- locally: $3 r \in\left(0,\left\|\mathrm{Rm}_{g_{i}}\right\|_{L_{\infty}}^{-\frac{1}{2}}\right)$
$\square\left(B_{3 r}(0) \subset T_{p_{i}} M_{i} \simeq \mathbb{R}^{n}, \exp _{p_{i}}^{*} g_{i}\right) \xrightarrow{C^{\infty}}\left(B_{3 r}(0), \hat{g}_{\infty}\right)$
\square local pseudo-group of isometries Γ_{i} of $\left(B_{r}(0), \exp _{p_{i}}^{*} g_{i}\right): x \sim_{\Gamma_{i}} y \Longleftrightarrow$ $\exp _{p_{i}}(x)=\exp _{p_{i}}(y) \in M_{i}$
$\square \Gamma_{i} \rightarrow \Gamma_{\infty}$ pseudo-group of isometries of $\left(B_{r}(0), \hat{g}_{\infty}\right)$ with neighbourhood of 1 isomorphic to neighbourhood of 1 in nilpotent Lie group
$\square\left(B_{r}\left(p_{i}\right) \subset M_{i}, g_{i}\right) \xrightarrow{G H}\left(B_{r}(0), \hat{g}_{\infty}\right) / \Gamma_{\infty}$
- Page (1981): Kummer construction along a 1-parameter family of "split" 4-tori $T^{4}=T^{4-k} \times T_{\epsilon}^{k}$ with $\operatorname{Vol}\left(T_{\epsilon}^{k}\right)=\epsilon \rightarrow 0 \rightsquigarrow$ complete Ricci-flat manifolds asymptotic to ($\mathbb{R}^{4-k} \times T^{k}$)/ \mathbb{Z}_{2} as rescaled limits Hitchin (1984), Biquard-Minerbe (2011)

The Gibbons-Hawking Ansatz

The Gibbons-Hawking Ansatz (1978): local form of hyperkähler metrics in dimension 4 with a triholomorphic circle action

- h positive harmonic function on $U \subset \mathbb{R}^{3}$
- $M \rightarrow U$ principal $U(1)$-bundle and connection θ with $d \theta=* d h$

$$
g=h g_{\mathbb{R}^{3}}+h^{-1} \theta^{2} \text { is a hyperkähler metric on } M
$$

The Gibbons-Hawking Ansatz

The Gibbons-Hawking Ansatz (1978): local form of hyperkähler metrics in dimension 4 with a triholomorphic circle action

- h positive harmonic function on $U \subset \mathbb{R}^{3}$
- $M \rightarrow U$ principal $U(1)$-bundle and connection θ with $d \theta=* d h$

$$
g=h g_{\mathbb{R}^{3}}+h^{-1} \theta^{2} \text { is a hyperkähler metric on } M
$$

Example: ALE and ALF metrics of cyclic type

$$
g_{m}=\left(m+\sum_{i=1}^{n} \frac{1}{2\left|x-a_{i}\right|}\right) d x \cdot d x+\left(m+\sum_{i=1}^{n} \frac{1}{2\left|x-a_{i}\right|}\right)^{-1} \theta^{2}
$$

- a_{1}, \ldots, a_{n} distinct \rightsquigarrow complete metric $a_{1}=\cdots=a_{k+1} \rightsquigarrow$ orbifold singularity $\mathbb{C}^{2} / \mathbb{Z}_{k}$
- m is called the mass
- $m=0 \rightsquigarrow$ ALE
- $m>0 \rightsquigarrow$ ALF

ALF gravitational instantons

- ($\left.M^{4}, g\right)$ is ALF (asymptotically locally flat): finite group $\Gamma<O(3)$ acting freely on S^{2} $M \backslash K \rightarrow\left(\mathbb{R}^{3} \backslash B_{R}\right) / \Gamma$ circle fibration and (up to a double cover)

$$
\left|\nabla^{k}\left(g-g_{\infty}\right)\right|=O\left(r^{-\tau-k}\right), \quad \tau>0, \quad g_{\infty}=g_{\mathbb{R}^{3} / \Gamma}+\theta^{2}
$$

$\square \Gamma=\mathrm{id} \Longrightarrow$ ALF space of cyclic type
$\square \Gamma=\mathbb{Z}_{2} \Longrightarrow$ ALF space of dihedral type

ALF gravitational instantons

- ($\left.M^{4}, g\right)$ is ALF (asymptotically locally flat):
finite group $\Gamma<O(3)$ acting freely on S^{2}
$M \backslash K \rightarrow\left(\mathbb{R}^{3} \backslash B_{R}\right) / \Gamma$ circle fibration and (up to a double cover)

$$
\left|\nabla^{k}\left(g-g_{\infty}\right)\right|=O\left(r^{-\tau-k}\right), \quad \tau>0, \quad g_{\infty}=g_{\mathbb{R}^{3} / \Gamma}+\theta^{2}
$$

$\square \Gamma=\mathrm{id} \Longrightarrow$ ALF space of cyclic type
$\square \Gamma=\mathbb{Z}_{2} \Longrightarrow$ ALF space of dihedral type

Minerbe (2010-2011)
■ $\left(M^{4}, g\right), \operatorname{Ric}(g) \geq 0$, quadratic curvature decay, $\operatorname{Vol}\left(B_{r}(p)\right) \leq C r^{a}$ with $a<4$ for all $p \in M \Longrightarrow a \leq 3$

- cubic volume growth + faster than quadratic curvature decay + hyperkähler \Longrightarrow ALF
- all ALF spaces of cyclic type obtained from Gibbons-Hawking ansatz
\square multi-Taub-NUT space with $n+1$ "nuts"
$\square A_{n}$ ALF space

ALF spaces of dihedral type

(M, g) is a D_{m} ALF space if up to a double cover g is asymptotic to the Gibbons-Hawking metric obtained from the harmonic function

$$
h=1+\frac{2 m-4}{2|x|} .
$$

ALF spaces of dihedral type

(M, g) is a D_{m} ALF space if up to a double cover g is asymptotic to the Gibbons-Hawking metric obtained from the harmonic function

$$
h=1+\frac{2 m-4}{2|x|} .
$$

G. Chen - X. Chen (2015) classified ALF spaces of dihedral type:

- The D_{0} ALF space is the Atiyah-Hitchin manifold (1988).
- The D_{1} ALF metrics are the double cover of the Atiyah-Hitchin metric and its Dancer deformations (1993).
- The D_{2} ALF spaces are Page's "periodic but nonstationary" gravitational instantons. Constructed by Hitchin (1984) and Biquard-Minerbe (2011).
- $D_{m}, m \geq 3$, constructed by Cherkis-Kapustin (1999) and Cherkis-Hitchin (2005), Biquard-Minerbe (2011) and Auvray (2012).

Codimension 1 collapse

Theorem (F. 2016)
For every collection of 8 ALF spaces of dihedral type M_{1}, \ldots, M_{8} and n ALF spaces of cyclic type N_{1}, \ldots, N_{n} satisfying

$$
\sum_{j=1}^{8} \chi\left(M_{j}\right)+\sum_{i=1}^{n} \chi\left(N_{i}\right)=24
$$

there exists a sequence $\left\{g_{\epsilon}\right\}$ of Ricci-flat metrics on the K 3 surface s.t.:

- As $\epsilon \rightarrow 0$ the metric g_{ϵ} collapses to the flat orbifold $\mathbb{T}^{3} / \mathbb{Z}_{2}$ with bounded curvature outside $8+n$ points
- An ALF space of dihedral type arises as a rescaled limit of the sequence close to one of the fixed points of the involution on \mathbb{T}^{3}
- An ALF space of cyclic type arises as a rescaled limit of the sequence close to one of the other n points

The GH ansatz over a punctured 3-torus

- flat 3-torus + involution τ with $\operatorname{Fix}(\tau)=\left\{q_{1}, \ldots, q_{8}\right\}$
\square integer weight $m_{j} \in \mathbb{Z}_{\geq 0}$ to each q_{j}
- further distinct $2 n$ points $\pm p_{1}, \ldots, \pm p_{n}$
\square integer weight $k_{i} \geq 1$ to each pair $\pm p_{i}$
- $\sum m_{j}+\sum k_{i}=16 \Longrightarrow$ harmonic function h with prescribed singularities

$$
h=\frac{k_{i}}{2 \operatorname{dist}\left(\pm p_{i}, \cdot\right)}+O(1) \quad h=\frac{2 m_{j}-4}{2 \operatorname{dist}\left(q_{j}, \cdot\right)}+O(1)
$$

- (incomplete) hyperkähler metric

$$
g_{\epsilon}^{\mathrm{gh}}=(1+\epsilon h) g_{T^{3}}+\epsilon^{2}(1+\epsilon h)^{-1} \theta^{2}
$$

- for $\epsilon>0$ sufficiently small $1+\epsilon h>0$ outside of balls of radius $\propto \epsilon$ around the points q_{j} with $m_{j}=0,1$
- glue in
\square an $A_{k_{i}-1}$ ALF space close to $\pm p_{i}$
\square a $D_{m_{j}}$ ALF space close to q_{j}
- perturb resulting approximate hyperkähler triple

Higher dimensions

Collapse of 7-dimensional G_{2}-manifolds to Calabi-Yau 3-folds

Theorem (F.-Haskins-Nordström 2017)
Let ($B, g_{0}, \omega_{0}, \Omega_{0}$) be an asymptotically conical Calabi-Yau 3-fold asymptotic to a Calabi-Yau cone ($\mathrm{C}, \mathrm{g}_{\mathrm{C}}$) and let $M \rightarrow B$ be a principal circle bundle.

Assume that $c_{1}(M) \neq 0$ but $c_{1}(M) \cup\left[\omega_{0}\right]=0$.
Then for every $\epsilon>0$ sufficiently small there exists an \mathbf{S}^{1}-invariant \mathbf{G}_{2}-holonomy metric g_{ϵ} on M with:

- ALF-type asymptotics: as $r \rightarrow \infty, g_{\epsilon}=g_{C}+\epsilon^{2} \theta_{\infty}^{2}+O\left(r^{-\nu}\right)$
- collapses with bounded curvature as $\epsilon \rightarrow 0: g_{\epsilon} \sim_{c^{k, \alpha}} g_{0}+\epsilon^{2} \theta^{2}$

Collapse along elliptic fibrations

- $\pi:\left(M, \omega_{c}\right) \rightarrow \mathbb{P}^{1}$ elliptic complex K 3 surface (with a section)
- 24 fibres of Kodaira type I_{1} (pinched tori)
- $\left[\omega_{\epsilon}\right] \cdot \pi^{-1}(z)=\varepsilon$

Collapse along elliptic fibrations

- $\pi:\left(M, \omega_{c}\right) \rightarrow \mathbb{P}^{1}$ elliptic complex K 3 surface (with a section)
- 24 fibres of Kodaira type I_{1} (pinched tori)
- $\left[\omega_{\epsilon}\right] \cdot \pi^{-1}(z)=\varepsilon$
- semi-flat metric $\omega_{s f, \varepsilon}$ away from singular fibres
$\square \omega_{s f, \varepsilon}^{2}=\frac{1}{2} \omega_{c} \wedge \bar{\omega}_{c}$
- $\left.\omega_{s f, \varepsilon}\right|_{\pi^{-1}(z)}$ flat metric of volume ε
- Ooguri-Vafa metric in the neighbourhood of singular fibres
- GH ansatz on $B_{r}(0) \times S^{1} \subset \mathbb{C}_{z} \times S^{1}$

$$
h=-\frac{1}{2 \pi \varepsilon} \log |z|+\sum_{m \in \mathbb{Z}^{*}} \frac{1}{2 \pi \varepsilon} e^{i t} K_{0}\left(\frac{2 \pi}{\varepsilon}|m z|\right)
$$

Collapse along elliptic fibrations

- $\pi:\left(M, \omega_{c}\right) \rightarrow \mathbb{P}^{1}$ elliptic complex K 3 surface (with a section)
- 24 fibres of Kodaira type I_{1} (pinched tori)
- $\left[\omega_{\epsilon}\right] \cdot \pi^{-1}(z)=\varepsilon$
- semi-flat metric $\omega_{s f, \varepsilon}$ away from singular fibres
$\square \omega_{s f, \varepsilon}^{2}=\frac{1}{2} \omega_{c} \wedge \bar{\omega}_{c}$
- $\left.\omega_{s f, \varepsilon}\right|_{\pi^{-1}(z)}$ flat metric of volume ε
- Ooguri-Vafa metric in the neighbourhood of singular fibres
- GH ansatz on $B_{r}(0) \times S^{1} \subset \mathbb{C}_{z} \times S^{1}$

$$
h=-\frac{1}{2 \pi \varepsilon} \log |z|+\sum_{m \in \mathbb{Z}^{*}} \frac{1}{2 \pi \varepsilon} e^{i t} K_{0}\left(\frac{2 \pi}{\varepsilon}|m z|\right)
$$

- Approximate solution ω_{ε}

$$
\omega_{\varepsilon}^{2}=\left(1+O\left(e^{-c / \varepsilon}\right)\right) \omega_{c} \wedge \bar{\omega}_{c}
$$

- complex Monge-Ampère $\left(\omega_{\varepsilon}^{2}+i \partial \bar{\partial} u_{\varepsilon}\right)^{2}=\omega_{c} \wedge \bar{\omega}_{c}$
- all constants in Yau's proof blow-up polynomially in ε^{-1}

Collapse along elliptic fibrations

Theorem (Gross-Wilson 2000)
Let $\pi:\left(M, \omega_{c}\right) \rightarrow \mathbb{P}^{1}$ be an elliptic complex K3 surface (with a section) with $24 I_{1}$ singular fibres. As $\varepsilon \rightarrow 0$ the Kähler Ricci-flat metric ω_{ε} such that $\left[\omega_{\varepsilon}\right] \cdot \pi^{-1}(z)=\varepsilon$ satisfies:

1. For every $k \geq 2, \alpha \in(0,1)$ and every simply connected set $U \subset \mathbb{P}^{1}$ with closure contained in the complement of the 24 points corresponding to singular fibres there exist constants $C, c>0$ such that $\left\|u_{\varepsilon}\right\|_{C^{k, \alpha}(U)} \leq C e^{-c / \varepsilon}$.
2. $\left(M, \omega_{\varepsilon}\right)$ converges in Gromov-Hausdorff sense to \mathbb{P}^{1} endowed with the distance induced by a metric ω_{0} defined away from the 24 singular points and satisfying $\operatorname{Ric}\left(\omega_{0}\right)=\omega_{\mathrm{WP}}$.

Gross-Tosatti-Zhang (2013, 2016): extension of this result to arbitrary elliptic complex K3 surfaces

ALG and ALH gravitational instantons

Hein 2012

- $\pi: X \rightarrow \mathbb{P}^{1}$ rational elliptic surface
- ω_{c} on $M=X \backslash \pi^{-1}(\infty)$
- Kähler metric ω on M with $\omega=\omega_{\text {sf }}$ at infinity
- complex Monge-Ampère equation on $M \rightsquigarrow$ complete hyperkähler metric on M with volume growth r^{2} (ALG), $r^{\frac{4}{3}}$ or r (ALH)

ALG and ALH gravitational instantons

Hein 2012

- $\pi: X \rightarrow \mathbb{P}^{1}$ rational elliptic surface
- ω_{c} on $M=X \backslash \pi^{-1}(\infty)$
- Kähler metric ω on M with $\omega=\omega_{\text {sf }}$ at infinity
- complex Monge-Ampère equation on $M \rightsquigarrow$ complete hyperkähler metric on M with volume growth r^{2} (ALG), $r^{\frac{4}{3}}$ or r (ALH)

Examples with faster than quadratic curvature decay

- Biquard-Minerbe (2011): minimal resolution of $(E \times \mathbb{C}) / \Gamma(A L G)$ or $\left(\mathbb{R} \times T^{3}\right) / \mathbb{Z}_{2}$ (ALH with linear volume growth)
- Chen-Chen (2015): classification of gravitational instantons with faster than quadratic curvature decay
- Chen-Chen (2015): ALH spaces with linear volume growth and "stretching-the-neck" degenerations

ALG and ALH gravitational instantons

Examples with quadratic curvature decay

- Gibbons-Hawking ansatz on $\left(\mathbb{R}_{z}^{2} \times S^{1}\right) / \mathbb{Z}_{2}$ or $\left(\mathbb{R}_{s} \times T^{2}\right) / \mathbb{Z}_{2}$

$$
h=\frac{2 b}{2 \pi} \log |z|, \quad h=\frac{2 b}{2 \pi}|s|
$$

ALG and ALH gravitational instantons

Examples with quadratic curvature decay

■ Gibbons-Hawking ansatz on $\left(\mathbb{R}_{z}^{2} \times S^{1}\right) / \mathbb{Z}_{2}$ or $\left(\mathbb{R}_{s} \times T^{2}\right) / \mathbb{Z}_{2}$

$$
h=\frac{2 b}{2 \pi} \log |z|, \quad h=\frac{2 b}{2 \pi}|s|
$$

Degenerations of complex K3 surfaces

- Kulikov model $\pi: \mathcal{X} \rightarrow \triangle\left(\mathcal{X}\right.$ smooth, $K_{\mathcal{X}} \simeq \mathcal{O}_{\mathcal{X}}, \pi^{-1}(0)$ reduced snc $)$
- Type I: $\pi^{-1}(0)$ smooth
\square Type II: $\pi^{-1}(0)$ chain of $k \geq 2$ surfaces, rational surfaces at either end, elliptic ruled surfaces in the middle, double curves smooth elliptic curves
\square Type III: $\pi^{-1}(0)$ rational surfaces meeting along cycles of rational curves; dual graph is a triangulation of S^{2}
- after hyperkähler rotation Gross-Wilson is Type III
- Kobayashi (1990): speculations about metric realisation of degenerations using ALG and ALH spaces

