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Special holonomy

10.92 Corollary. Let (M, g) be a Riemannian manifold of dimension n which is not
locally symmetric and whose holonomy representation Hol® is irreducible. Then its
holonomy representation Hol® is one of the following:

H. Structure IT 301

(T) Hol® = SO(n)
(Il)n=2mand Hol® = U(m) (m=2)
(Il) n = 2m and Hol® = SU(m) (m = 2)
(IV) n = 4m and Hol® = Sp(1)- Sp(m) (m = 2)
VMn= 4m and Hol® = Sp(m) (m=>2)
I‘YI\ 2 11 .10 o H /r\\
VII) n=8and Hol® = S 1n(7)
( p
(VIII) n = 7 and Hol® =




Hyperkahler 4-manifolds

® A Riemannian 4-manifold (M*, g) is hyperkahler if Hol(g) C SU(2).
m hyperkahler triple: w = (w1, ws,ws) 2-forms on M such that

dw; =0, %w;/\wj:(s,-jwf.

m Hyperkahler 4-manifolds are Kahler Ricci-flat:
0 we =wz + iw3, we Awe =0, we Awe > 0 ~» complex structure J
O Kahler form w = w1 (w A we =0, dw = 0) with vanishing Ricci-form

2 —
w Z%wc/\wC

® The (smooth 4-manifold underlying a complex) K3 surface
O every Einstein metrics on the K3 surface is hyperkahler

1 LScal’ + |W, [ =2x +3r =0, Aps = V*V —2W, + Scal
27‘(2 M48 3

O Period map

P: M — Gr'(3,19)/Aut(H*(K3,7)), 8w +— span([w]).



Non-collapsed limits

Theorem (Nakajima 1988, Bando—Kasue—Nakajima 1989, Anderson 1990)

Fix A,C,V,D >0 and let (M}, g;) be a sequence of Einstein
4-manifolds satisfying

1. |Ric(g))| < A,

2. x(My) < C,

3. Vol(M;, g;) > V,
4. diam(M;, g;) < D.

Then a subsequence converges to an Einstein orbifold (M, g-,) with a
definite number of isolated singular points.




Non-collapsed limits

Theorem (Nakajima 1988, Bando—Kasue—Nakajima 1989, Anderson 1990)

Fix A,C,V,D >0 and let (M}, g;) be a sequence of Einstein
4-manifolds satisfying

1. [Ric(gi)| < A

2. x(My) < C,

3. Vol(M;, g;) > V,
4. diam(M;, g;) < D.

Then a subsequence converges to an Einstein orbifold (M, g-,) with a
definite number of isolated singular points.

= non-collapsing: Vol (B

1(p)) > v >0 forall pe M;
= finite energy: ||ng ||L2 <

C
82\ (M / LScal® + W] — L Ric |2




Non-collapsed limits

Theorem (continued)

(M4, &) < (Ms, g50) Einstein orbifold

For each singular point x € M., one can find x; € M; and r; — oo such
that, up to subsequences, x; — x and (M;, r,?g;,x;) converges to a
Ricci-flat ALE 4-manifold (W, h, x) of rate v = —4.

m [ C SO(4) finite, acting freely on R*\ {0}
w f (R BR)/T — W\ K

[VE(F*h — hgejr)| = O(r" ™)

® Bando (1990), Anderson—Cheeger (1991): “bubble-tree” of ALE orbifolds




ALE gravitational instantons

m gravitational instanton: complete hyperkahler 4-manifold with decaying
curvature

O finite energy: ||Rm||;2 < oo
O faster than quadratic curvature decay: [Rm| = O(r=*7%), 6 >0

® volume growth: cr < Vol(B,) < Cr*

® Bando—-Kasue-Nakajima (1989): complete Ricci-flat d = 4 + finite
energy + maximal volume growth = ALE of rate —4
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® Eguchi-Hanson metric on T*52 = Opi(—2) (1978)

P = \/r4+t4+2t2|ogr—t2|og( r4—|—t4+t2)



ALE gravitational instantons

m gravitational instanton: complete hyperkahler 4-manifold with decaying
curvature

O finite energy: ||Rm||;2 < oo
O faster than quadratic curvature decay: [Rm| = O(r=*7%), 6 >0

® volume growth: cr < Vol(B,) < Cr*
® Bando—-Kasue-Nakajima (1989): complete Ricci-flat d = 4 + finite
energy + maximal volume growth = ALE of rate —4

® Eguchi-Hanson metric on T*52 = Opi(—2) (1978)

P = \/r4+t4+2t2|ogr—t2|og( r4—|—t4+t2)

m Kronheimer (1989)
O T finite group of SU(2) that acts freely on C?\ {0}
0 Xr smooth 4-manifold underlying minimal resolution of <c2/r
0 [wl(X)#0¢€ R3 for all ¥ € H(Xr,Z), - X = =2



The Kummer construction

Gibbons—Pope 1979, LeBrun—Singer 1994, Donaldson 2012
Building blocks:

® A background metric to model the region where curvature stays bounded
Flat orbifold T4/Z2; cut-out neighbourhoods of the 16 orbifold
singularities

® Non-compact “bubbles” to model the geometry of high curvature regions
Eguchi-Hanson ALE metric on T*S?

Gluing:

® Use the building blocks to construct an approximate solution.
m Use analysis to perturb to an exact Ricci-flat metric.



The Kummer construction

m Complex Monge—Ampere equation

O construct complex structure by blow-up: wc

O solve (w + i@gu)2 = %wc A @We using the Implicit Function Theorem

® Gluing hyperkahler triples
O choice of gauge SO(4)/U(2) ~ S? at each singular point
O gluing ~ closed approximately hyperkahler triple w,

wi Nwj = Q,-jwf, Q=id+ O(tz)
O perturb w, » w,+da+¢ acQ, (cH QR
dfa+¢=7F(Q—id+d axda), d*a=0

O parameter count: 58 =10+ 16 x 3



Higher dimensions

m codimension 4 orbifold singularities
O Codimension 4 Conjecture: Cheeger—-Naber (2015), Cheeger (2003),
Cheeger—Tian (2005)
0 Joyce's construction of Gz and Spin, manifolds by desingularising Td/l'
(1996)

m jsolated conical singularities

O Riemannian cones with special holonomy (Sasaki—Einstein, 3-Sasakian,
nearly Kihler manifolds,...)

O deformation and smoothing theory (Joyce, Chan, Karigiannis,
Karigiannis—Lotay), AC Calabi—Yau manifolds (Joyce, vanCoevering, Goto,
Conlon—Hein)

O Hein—Sun (2017): existence of Calabi—Yau manifolds with isolated conical

singularities



Collapse

= (M* g), Ric(gi) =0, Vol(g;) = 1, diam(g;) — oo



Collapse

m (M* g), Ric(gi) =0, Vol(g;) = 1, diam(g;) — oo
® Anderson (1992)
Theorem III below.) Thus, suppose that for all z € M,

volg(Bz(1)) -0, asi—oo. (5.2)

In this case, we have the following result. Recall that a sequence of Rie-
mannian manifolds (Xj, g;) collapses, in the sense of Cheeger-Gromov [15],
if

inj;(z) -0, ast— oo, and

inj;(2)? - |Ril(z) < €0 , (5.3)

for any z € X;. Here inj;() is the injectivity radius of (X;, g;) at x, while
€o is a small absolute constant (the Cheeger-Gromov constant).

THEOREM 5.1. If {g;} is a sequence of Einstein metrics on M, of volume
1, satisfying (5.2), then {g;} collapses, in the sense of Cheeger-Gromov,
metrically on the complement of finitely many points {2} € M.



Collapse

m (M* g), Ric(gi) =0, Vol(g;) = 1, diam(g;) — oo
® Anderson (1992)
Theorem III below.) Thus, suppose that for all z € M,

volg(Bz(1)) -0, asi—oo. (5.2)

In this case, we have the following result. Recall that a sequence of Rie-
mannian manifolds (X;, g;) collapses, in the sense of Cheeger-Gromov [15],
if

inj;(z) -0, asi— oo, and

inj;(2)? - |Ril(z) < €0 , (5.3)

for any z € X;. Here inj;() is the injectivity radius of (X;, g;) at x, while
€o is a small absolute constant (the Cheeger-Gromov constant).

THEOREM 5.1. If {g;} is a sequence of Einstein metrics on M, of volume
1, satisfying (5.2), then {g;} collapses, in the sense of Cheeger-Gromov,
metrically on the complement of finitely many points {2} € M.
® Cheeger-Tian (2006): bounded curvature outside finitely many
points



Theorem 0.1 (Collapse implies Ly concentration of curvature). There ezists v > 0,
B, ¢, such that the following holds. Let M* denote a complete Einstein 4-manifold
satisfying

(0.2) Al <3,
(0.3) / [R*<C,

M4
and for all p and some s <1,

Vol(Bs(p

(0.4) % <w.
Then there exist py,...,pN, with
(0.5) N<B-C,

such that

T—00

i (VOB | | Vol(B,(m)
(0.6) /M“\(U,-Bs(p,))lRl <c (Z Bobi)) g VU )

i

Theorem 0.8 (e-regularity). There ezists € > 0, ¢, such that the following holds.
Let M* denote an Einstein 4-manifold satisfying (0.2) and let < 1. If Bs(p) has
compact closure for all s <r and

09) [ oime<e,
B-(p)

then

(0.10) sup |R| <c-r2.

B%,.(P)



Collapse

m Anderson (1992): Cheeger—-Gromov collapse outside finitely many points
® Cheeger-Tian (2006): bounded curvature outside finetely many points

® Cheeger-Fukaya—Gromov (1992): collapse with bounded curvature

_1
locally: 3r € (0, ||Rmg||,-2)

O
0 (Bsr(0) C TpM; = R", explg1) < (B3:(0), &)
[}

local pseudo-group of isometries I'; of (B,(0), exp;, 8i): x ~r; y <=

exp,, (x) = expp, (v) € M;

O i — s pseudo-group of isometries of (B,(0), 8 ) with neighbourhood of
1 isomorphic to neighbourhood of 1 in nilpotent Lie group

(B:(pi) C Mi,g:) <% (B(0), &) /T oo

O



Collapse

m Anderson (1992): Cheeger—-Gromov collapse outside finitely many points
® Cheeger-Tian (2006): bounded curvature outside finetely many points
® Cheeger-Fukaya—Gromov (1992): collapse with bounded curvature

O

_1
locally: 3r € (0, |[Rmg,||,-2)
(Bg,(O) C TpMi =~ R", expy, g,) (B3,(O) 8)
local pseudo—group of isometries I'; of (B:(0),exp, gi): x ~r, y <=
exp,, (x) = exp, (v) € M;
O i — s pseudo-group of isometries of (B,(0), 8 ) with neighbourhood of
1 isomorphic to neighbourhood of 1 in nilpotent Lie group
GH "
0 (Bi(pi) C Mi, gi) — (Br(0),8)/T
m Page (1981): Kummer construction along a 1-parameter family of “split”
4-tori T* = T* Kk x Tk with VoI(TX) = ¢ — 0 ~ complete Ricci-flat
manifolds asymptotic to (R*~* x Tk)/Z, as rescaled limits
Hitchin (1984), Biquard—Minerbe (2011)

o O



The Gibbons—Hawking Ansatz

The Gibbons—Hawking Ansatz (1978): local form of hyperkdhler metrics
in dimension 4 with a triholomorphic circle action

® h positive harmonic function on U C R3

® M — U principal U(1)-bundle and connection 6 with df = xdh

g = hgrs + h™16? is a hyperkihler metric on M



The Gibbons—Hawking Ansatz

The Gibbons—Hawking Ansatz (1978): local form of hyperkdhler metrics
in dimension 4 with a triholomorphic circle action

® h positive harmonic function on U C R3

® M — U principal U(1)-bundle and connection 6 with df = xdh

g = hgrs + h™16? is a hyperkihler metric on M

Example: ALE and ALF metrics of cyclic type

-1
" 1 - 1

m: —_— d 'd 92

o= (m+ % ey o 90+ (m+ B 2

B 3y,...,a, distinct ~ complete metric

a; = --- = axy1 ~ orbifold singularity C?/Z
® m is called the mass

O m=0~ ALE

O m>0~ ALF



ALF gravitational instantons

m (M* g)is ALF (asymptotically locally flat):
finite group I < O(3) acting freely on S?
M\ K — (R3\ Bg)/T circle fibration and (up to a double cover)
|Vk (8 —8x)|= O(FT?kL T >0, 8oo = 8BR3T T+ 0

0 ' = id = ALF space of cyclic type
0 [ = Z, = ALF space of dihedral type



ALF gravitational instantons

m (M* g)is ALF (asymptotically locally flat):
finite group I < O(3) acting freely on S?
M\ K — (R3\ Bg)/T circle fibration and (up to a double cover)

|Vk (8 —8x)|= O(FT?kL T >0, 8oo = 8BR3T T+ 0

0 ' = id = ALF space of cyclic type
0 [ = Z, = ALF space of dihedral type

Minerbe (2010-2011)

= (M* g), Ric(g) > 0, quadratic curvature decay, Vol(B,(p)) < Cr® with
a<4forallpe M = a<3

® cubic volume growth + faster than quadratic curvature decay +
hyperkahler = ALF

m 3l ALF spaces of cyclic type obtained from Gibbons—Hawking ansatz
0 multi-Taub—NUT space with n + 1 “nuts”
0 A, ALF space



ALF spaces of dihedral type

(M, g) is a D, ALF space if up to a double cover g is asymptotic to the
Gibbons—Hawking metric obtained from the harmonic function
2m —4

h=1+ ———.
T



ALF spaces of dihedral type

(M, g) is a D, ALF space if up to a double cover g is asymptotic to the
Gibbons—Hawking metric obtained from the harmonic function

2m —4
h=1+ ———.
T

G. Chen — X. Chen (2015) classified ALF spaces of dihedral type:

m The Dy ALF space is the Atiyah—Hitchin manifold (1988).

m The D; ALF metrics are the double cover of the Atiyah—Hitchin metric
and its Dancer deformations (1993).

The D, ALF spaces are Page's “periodic but nonstationary” gravitational
instantons. Constructed by Hitchin (1984) and Biquard—Minerbe (2011).

® D,,, m >3, constructed by Cherkis—Kapustin (1999) and Cherkis—Hitchin
(2005), Biquard—Minerbe (2011) and Auvray (2012).



Codimension 1 collapse

Theorem (F. 2016)
For every collection of 8 ALF spaces of dihedral type My,..., Mg and n
ALF spaces of cyclic type Ny, ..., N, satisfying

8 n

D ox(My) + > x(Ny) = 24
i=1

j=1
there exists a sequence {g.} of Ricci-flat metrics on the K3 surface s.t.:

® As ¢ — 0 the metric g. collapses to the flat orbifold T2/Z, with
bounded curvature outside 8 4+ n points

® An ALF space of dihedral type arises as a rescaled limit of the
sequence close to one of the fixed points of the involution on T3

®m An ALF space of cyclic type arises as a rescaled limit of the sequence
close to one of the other n points




The GH ansatz over a punctured 3-torus

m flat 3-torus + involution 7 with Fix(7) = {q1,..., gs}
O integer weight m; € Z>¢ to each g;

further distinct 2n points +ps, ..., £ps
O integer weight ki > 1 to each pair +p;

® > m; + ) ki = 16 = harmonic function h with prescribed singularities
ki 2m; — 4
h= ———+0(1 h=_-—"—"L — +0(1
2dist(+p;, -) +00) 2dist(q;, ) +00)
® (incomplete) hyperkahler metric
gf = (14 eh)grs + (1 +eh)716?
m for € > 0 sufficiently small 1 + ¢ h > 0 outside of balls of radius €
around the points g; with m; = 0,1
® glue in
O an Ay -1 ALF space close to £p;
O a Dp; ALF space close to g;
B perturb resulting approximate hyperkahler triple



Higher dimensions

Collapse of 7-dimensional Go—manifolds to Calabi—Yau 3-folds

Theorem (F.—Haskins—Nordstrém 2017)

Let (B, go, wo, Qo) be an asymptotically conical Calabi—Yau 3-fold
asymptotic to a Calabi-Yau cone (C, gc) and let M — B be a principal
circle bundle.

Assume that ¢;(M) # 0 but ¢;(M) U [we] = 0.

Then for every € > 0 sufficiently small there exists an S'—invariant
G,—holonomy metric g. on M with:
m ALF-type asymptotics: as r — 00, g. = gc + €202, + O(r™")

m collapses with bounded curvature as € — 0: g. ~cr.a 8o + €26




Collapse along elliptic fibrations

® 7 (M,w.) — P! elliptic complex K3 surface (with a section)
m 24 fibres of Kodaira type /; (pinched tori)
" ] 7N (z) =€



Collapse along elliptic fibrations

® 7 (M,w.) — P! elliptic complex K3 surface (with a section)
m 24 fibres of Kodaira type /; (pinched tori)
] 7 z)=¢
® semi-flat metric wsr . away from singular fibres
O wffg = 2%/\@
O wsf,e|n—1(, flat metric of volume ¢

u Oogurl—Vafa metric in the neighbourhood of singular fibres
0 GH ansatz on B,(0) x S* C C, x S*

h=—5log|z| + Z s e Ko (2 |mz)

2me
mezZ*



Collapse along elliptic fibrations

® 7 (M,w.) — P! elliptic complex K3 surface (with a section)
24 fibres of Kodaira type /1 (pinched tori)
[we] - 77 H(z) = ¢

semi-flat metric wsr . away from singular fibres
2 _

O Wer e = 2wc/\wc

O wsf,e|n—1(, flat metric of volume ¢

Oogurl—Vafa metric in the neighbourhood of singular fibres
0 GH ansatz on B,(0) x S* C C, x S*

h=—5log|z| + Z s e Ko (2 |mz)
mez*

® Approximate solution w,
= (1 + O(e“—‘/f)) We A We

N .aR 2 _
complex Monge-Ampere (w? + i00u.)” = we A We
O all constants in Yau's proof blow-up polynomially in ¢

-1



Collapse along elliptic fibrations

Theorem (Gross—Wilson 2000)

Let 7: (M,w.) — P! be an elliptic complex K3 surface (with a section)

with 24 I; singular fibres. As ¢ — 0 the Kahler Ricci-flat metric w, such

that [w.] - 771(z) = ¢ satisfies:

1. For every k > 2, a € (0,1) and every simply connected set U C P!
with closure contained in the complement of the 24 points
corresponding to singular fibres there exist constants C, ¢ > 0 such
that ||UEHC/<JX(U) < Ce—c/=.

2. (M, w.) converges in Gromov—Hausdorff sense to P* endowed with
the distance induced by a metric wg defined away from the 24
singular points and satisfying Ric(wp) = wwe.

Gross—Tosatti—Zhang (2013, 2016): extension of this result to arbitrary
elliptic complex K3 surfaces



ALG and ALH gravitational instantons

Hein 2012

m 7: X — P! rational elliptic surface

®mwoon M=X\7"1(c0)

m Kahler metric w on M with w = wy at infinity

® complex Monge—Ampére equation on M ~» complete hyperkahler metric
on M with volume growth r2 (ALG), r3 or r (ALH)



ALG and ALH gravitational instantons

Hein 2012

m 7: X — P! rational elliptic surface

®mwoon M=X\7"1(c0)

m Kahler metric w on M with w = wy at infinity

® complex Monge—Ampére equation on M ~» complete hyperkahler metric
on M with volume growth r2 (ALG), r3 or r (ALH)

Examples with faster than quadratic curvature decay

m Biquard—Minerbe (2011): minimal resolution of (E x C)/I' (ALG) or
(R x T3)/Zy (ALH with linear volume growth)

® Chen—Chen (2015): classification of gravitational instantons with faster
than quadratic curvature decay

® Chen—Chen (2015): ALH spaces with linear volume growth and
“stretching-the-neck” degenerations



ALG and ALH gravitational instantons

Examples with quadratic curvature decay
® Gibbons—Hawking ansatz on (R2 x S')/Z, or (Rs x T?)/Z

h=2blog|z|, h= 2b|s]



ALG and ALH gravitational instantons

Examples with quadratic curvature decay
® Gibbons—Hawking ansatz on (R2 x S')/Z, or (Rs x T?)/Z

h=2blog|z|, h=2b|s|

Degenerations of complex K3 surfaces
® Kulikov model 7: X — A (X smooth, Kx ~ Ox, m*(0) reduced snc)
0 Type I: 771(0) smooth
0 Type Il: 771(0) chain of k > 2 surfaces, rational surfaces at either end,
elliptic ruled surfaces in the middle, double curves smooth elliptic curves
0 Type lll: 771(0) rational surfaces meeting along cycles of rational curves;
dual graph is a triangulation of 2

m after hyperkahler rotation Gross—Wilson is Type IlI

m Kobayashi (1990): speculations about metric realisation of degenerations
using ALG and ALH spaces



