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Special holonomy



Hyperkähler 4-manifolds

� A Riemannian 4-manifold (M4, g) is hyperkähler if Hol(g) ⊆ SU(2).
� hyperkähler triple: ω = (ω1, ω2, ω3) 2-forms on M such that

dωi = 0, 1
2 ωi ∧ ωj = δij ω

2
1 .

� Hyperkähler 4-manifolds are Kähler Ricci-flat:
� ωc = ω2 + iω3, ωc ∧ ωc = 0, ωc ∧ ωc > 0  complex structure J
� Kähler form ω = ω1 (ω ∧ ωc = 0, dω = 0) with vanishing Ricci-form

ω2 = 1
2
ωc ∧ ωc

� The (smooth 4-manifold underlying a complex) K3 surface
� every Einstein metrics on the K3 surface is hyperkähler

1

2π2

∫
M

1
48
Scal2 + |W+|2 = 2χ+ 3τ = 0, △Λ+ = ∇∗∇− 2W+ + 1

3
Scal

� Period map

P : M −→ Gr+(3, 19)/Aut(H2(K3,Z)), gω 7−→ span([ω]).



Non-collapsed limits

Theorem (Nakajima 1988, Bando–Kasue–Nakajima 1989, Anderson 1990)

Fix Λ,C ,V ,D > 0 and let (M4
i , gi ) be a sequence of Einstein

4-manifolds satisfying

1. |Ric(gi )| ≤ Λ,

2. χ(Mi ) ≤ C ,

3. Vol(Mi , gi ) ≥ V ,

4. diam(Mi , gi ) ≤ D.

Then a subsequence converges to an Einstein orbifold (M∞, g∞) with a
definite number of isolated singular points.

� non-collapsing: Volgi (B1(p)) ≥ v > 0 for all p ∈ Mi

� finite energy: ∥Rmgi ∥L2 ≤ C

8π2χ(M) =

∫
M

1
24Scal

2 + |W |2 − 1
2 |

◦
Ric |2
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Non-collapsed limits

Theorem (continued)

(M4
i , gi )

GH−→ (M∞, g∞) Einstein orbifold
For each singular point x ∈ M∞ one can find xi ∈ Mi and ri → ∞ such
that, up to subsequences, xi → x and (Mi , r

2
i gi , xi ) converges to a

Ricci-flat ALE 4-manifold (W , h, x∞) of rate ν = −4.

� Γ ⊂ SO(4) finite, acting freely on R4 \ {0}
� f : (R4 \ BR)/Γ → W \ K

|∇k(f ∗h − hR4/Γ)| = O(rν−k)

� Bando (1990), Anderson–Cheeger (1991): “bubble-tree” of ALE orbifolds



ALE gravitational instantons
� gravitational instanton: complete hyperkähler 4-manifold with decaying

curvature
� finite energy: ∥Rm∥L2 < ∞
� faster than quadratic curvature decay: |Rm| = O(r−2−δ), δ > 0

� volume growth: c r ≤ Vol(Br ) ≤ C r4

� Bando–Kasue–Nakajima (1989): complete Ricci-flat d = 4 + finite
energy + maximal volume growth =⇒ ALE of rate −4

� Eguchi–Hanson metric on T ∗S2 = OP1(−2) (1978)

φt =
√
r4 + t4 + 2t2 log r − t2 log

(√
r4 + t4 + t2

)
� Kronheimer (1989)

� Γ finite group of SU(2) that acts freely on C2 \ {0}
� XΓ smooth 4-manifold underlying minimal resolution of C2/Γ

� [ω](Σ) ̸= 0 ∈ R3 for all Σ ∈ H2(XΓ,Z), Σ · Σ = −2
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The Kummer construction

Gibbons–Pope 1979, LeBrun–Singer 1994, Donaldson 2012

Building blocks:

� A background metric to model the region where curvature stays bounded
Flat orbifold T 4/Z2; cut-out neighbourhoods of the 16 orbifold
singularities

� Non-compact “bubbles” to model the geometry of high curvature regions
Eguchi–Hanson ALE metric on T ∗S2

Gluing:

� Use the building blocks to construct an approximate solution.

� Use analysis to perturb to an exact Ricci-flat metric.



The Kummer construction

� Complex Monge–Ampère equation
� construct complex structure by blow-up: ωc

� solve (ω + i∂∂u)2 = 1
2
ωc ∧ ωc using the Implicit Function Theorem

� Gluing hyperkähler triples
� choice of gauge SO(4)/U(2) ≃ S2 at each singular point
� gluing  closed approximately hyperkähler triple ωt

ωi ∧ ωj = Qij ω
2
1 , Q = id + O(t2)

� perturb ωt 7→ ωt + da+ ζ, a ∈ Ω1, ζ ∈ H+ ⊗ R3,

d+a+ ζ = F(Q − id + d−a ∗ d−a), d∗a = 0

� parameter count: 58 = 10 + 16× 3



Higher dimensions

� codimension 4 orbifold singularities
� Codimension 4 Conjecture: Cheeger–Naber (2015), Cheeger (2003),

Cheeger–Tian (2005)
� Joyce’s construction of G2 and Spin7 manifolds by desingularising T d/Γ

(1996)

� isolated conical singularities
� Riemannian cones with special holonomy (Sasaki–Einstein, 3–Sasakian,

nearly Kähler manifolds,...)
� deformation and smoothing theory (Joyce, Chan, Karigiannis,

Karigiannis–Lotay), AC Calabi–Yau manifolds (Joyce, vanCoevering, Goto,
Conlon–Hein)

� Hein–Sun (2017): existence of Calabi–Yau manifolds with isolated conical
singularities



Collapse

� (M4, gi ), Ric(gi ) = 0, Vol(gi ) = 1, diam(gi ) → ∞

� Anderson (1992)

� Cheeger–Tian (2006): bounded curvature outside finitely many
points
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Collapse

� Anderson (1992): Cheeger–Gromov collapse outside finitely many points

� Cheeger–Tian (2006): bounded curvature outside finetely many points

� Cheeger–Fukaya–Gromov (1992): collapse with bounded curvature

� locally: 3r ∈ (0, ∥Rmgi ∥
− 1

2
L∞)

�
(
B3r (0) ⊂ TpiMi ≃ Rn, exp∗pi gi

) C∞
−→ (B3r (0), ĝ∞)

� local pseudo-group of isometries Γi of (Br (0), exp
∗
pi
gi ): x ∼Γi y ⇐⇒

exppi (x) = exppi (y) ∈ Mi

� Γi → Γ∞ pseudo-group of isometries of (Br (0), ĝ∞) with neighbourhood of
1 isomorphic to neighbourhood of 1 in nilpotent Lie group

� (Br (pi ) ⊂ Mi , gi )
GH−→ (Br (0), ĝ∞)/Γ∞

� Page (1981): Kummer construction along a 1–parameter family of “split”
4-tori T 4 = T 4−k × T k

ϵ with Vol(T k
ϵ ) = ϵ → 0  complete Ricci-flat

manifolds asymptotic to (R4−k × T k)/Z2 as rescaled limits
Hitchin (1984), Biquard–Minerbe (2011)
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� local pseudo-group of isometries Γi of (Br (0), exp
∗
pi
gi ): x ∼Γi y ⇐⇒

exppi (x) = exppi (y) ∈ Mi

� Γi → Γ∞ pseudo-group of isometries of (Br (0), ĝ∞) with neighbourhood of
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The Gibbons–Hawking Ansatz

The Gibbons–Hawking Ansatz (1978): local form of hyperkähler metrics
in dimension 4 with a triholomorphic circle action
� h positive harmonic function on U ⊂ R3

� M → U principal U(1)–bundle and connection θ with dθ = ∗dh

g = h gR3 + h−1θ2 is a hyperkähler metric on M

Example: ALE and ALF metrics of cyclic type

gm =

(
m +

n∑
i=1

1

2|x − ai |

)
dx · dx +

(
m +

n∑
i=1

1

2|x − ai |

)−1

θ2

� a1, . . . , an distinct  complete metric
a1 = · · · = ak+1  orbifold singularity C2/Zk

� m is called the mass
� m = 0  ALE
� m > 0  ALF
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ALF gravitational instantons

� (M4, g) is ALF (asymptotically locally flat):

finite group Γ < O(3) acting freely on S2

M \ K → (R3 \ BR)/Γ circle fibration and (up to a double cover)

|∇k (g − g∞) | = O(r−τ−k), τ > 0, g∞ = gR3/Γ + θ2

� Γ = id =⇒ ALF space of cyclic type
� Γ = Z2 =⇒ ALF space of dihedral type

Minerbe (2010–2011)
� (M4, g), Ric(g) ≥ 0, quadratic curvature decay, Vol

(
Br (p)

)
≤ Cr a with

a < 4 for all p ∈ M =⇒ a ≤ 3
� cubic volume growth + faster than quadratic curvature decay +

hyperkähler =⇒ ALF
� all ALF spaces of cyclic type obtained from Gibbons–Hawking ansatz

� multi-Taub–NUT space with n + 1 “nuts”
� An ALF space
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ALF spaces of dihedral type

(M, g) is a Dm ALF space if up to a double cover g is asymptotic to the
Gibbons–Hawking metric obtained from the harmonic function

h = 1 +
2m − 4

2 |x |
.

G. Chen – X. Chen (2015) classified ALF spaces of dihedral type:

� The D0 ALF space is the Atiyah–Hitchin manifold (1988).

� The D1 ALF metrics are the double cover of the Atiyah–Hitchin metric
and its Dancer deformations (1993).

� The D2 ALF spaces are Page’s “periodic but nonstationary” gravitational
instantons. Constructed by Hitchin (1984) and Biquard–Minerbe (2011).

� Dm, m ≥ 3, constructed by Cherkis–Kapustin (1999) and Cherkis–Hitchin
(2005), Biquard–Minerbe (2011) and Auvray (2012).
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Codimension 1 collapse

Theorem (F. 2016)

For every collection of 8 ALF spaces of dihedral type M1, . . . ,M8 and n
ALF spaces of cyclic type N1, . . . ,Nn satisfying

8∑
j=1

χ(Mj) +
n∑

i=1

χ(Ni ) = 24

there exists a sequence {gϵ} of Ricci-flat metrics on the K3 surface s.t.:

� As ϵ → 0 the metric gϵ collapses to the flat orbifold T3/Z2 with
bounded curvature outside 8 + n points

� An ALF space of dihedral type arises as a rescaled limit of the
sequence close to one of the fixed points of the involution on T3

� An ALF space of cyclic type arises as a rescaled limit of the sequence
close to one of the other n points



The GH ansatz over a punctured 3-torus
� flat 3-torus + involution τ with Fix(τ) = {q1, . . . , q8}

� integer weight mj ∈ Z≥0 to each qj

� further distinct 2n points ±p1, . . . ,±pn
� integer weight ki ≥ 1 to each pair ±pi

�
∑

mj +
∑

ki = 16 =⇒ harmonic function h with prescribed singularities

h =
ki

2 dist(±pi , ·)
+ O(1) h =

2mj − 4

2 dist(qj , ·)
+ O(1)

� (incomplete) hyperkähler metric

ggh
ϵ = (1 + ϵ h) gT 3 + ϵ2(1 + ϵ h)−1θ2

� for ϵ > 0 sufficiently small 1 + ϵ h > 0 outside of balls of radius ∝ ϵ
around the points qj with mj = 0, 1

� glue in
� an Aki−1 ALF space close to ±pi
� a Dmj ALF space close to qj

� perturb resulting approximate hyperkähler triple



Higher dimensions

Collapse of 7-dimensional G2–manifolds to Calabi–Yau 3-folds

Theorem (F.–Haskins–Nordström 2017)

Let (B, g0, ω0,Ω0) be an asymptotically conical Calabi–Yau 3-fold
asymptotic to a Calabi–Yau cone (C, gC) and let M → B be a principal
circle bundle.

Assume that c1(M) ̸= 0 but c1(M) ∪ [ω0] = 0.

Then for every ϵ > 0 sufficiently small there exists an S1–invariant
G2–holonomy metric gϵ on M with:

� ALF–type asymptotics: as r → ∞, gϵ = gC + ϵ2θ2∞ + O(r−ν)

� collapses with bounded curvature as ϵ → 0: gϵ ∼C k,α g0 + ϵ2θ2



Collapse along elliptic fibrations

� π : (M, ωc) → P1 elliptic complex K3 surface (with a section)
� 24 fibres of Kodaira type I1 (pinched tori)
� [ωϵ] · π−1(z) = ε

� semi-flat metric ωsf ,ε away from singular fibres

� ω2
sf ,ε = 1

2
ωc ∧ ωc

� ωsf ,ε|π−1(z) flat metric of volume ε

� Ooguri–Vafa metric in the neighbourhood of singular fibres

� GH ansatz on Br (0)× S1 ⊂ Cz × S1

h = − 1
2πε

log |z |+
∑
m∈Z∗

1
2πε

e itK0

(
2π
ε
|mz |

)
� Approximate solution ωε

ω2
ε =

(
1 + O(e−c/ε)

)
ωc ∧ ωc

� complex Monge–Ampère
(
ω2
ε + i∂∂uε

)2
= ωc ∧ ωc

� all constants in Yau’s proof blow-up polynomially in ε−1
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Collapse along elliptic fibrations

Theorem (Gross–Wilson 2000)

Let π : (M, ωc) → P1 be an elliptic complex K3 surface (with a section)
with 24 I1 singular fibres. As ε → 0 the Kähler Ricci-flat metric ωε such
that [ωε] · π−1(z) = ε satisfies:

1. For every k ≥ 2, α ∈ (0, 1) and every simply connected set U ⊂ P1

with closure contained in the complement of the 24 points
corresponding to singular fibres there exist constants C , c > 0 such
that ∥uε∥C k,α(U) ≤ Ce−c/ε.

2. (M, ωε) converges in Gromov–Hausdorff sense to P1 endowed with
the distance induced by a metric ω0 defined away from the 24
singular points and satisfying Ric(ω0) = ωWP.

Gross–Tosatti–Zhang (2013, 2016): extension of this result to arbitrary
elliptic complex K3 surfaces



ALG and ALH gravitational instantons

Hein 2012

� π : X → P1 rational elliptic surface

� ωc on M = X \ π−1(∞)

� Kähler metric ω on M with ω = ωsf at infinity

� complex Monge–Ampère equation on M  complete hyperkähler metric
on M with volume growth r2 (ALG), r

4
3 or r (ALH)

Examples with faster than quadratic curvature decay

� Biquard–Minerbe (2011): minimal resolution of (E × C)/Γ (ALG) or
(R× T 3)/Z2 (ALH with linear volume growth)

� Chen–Chen (2015): classification of gravitational instantons with faster
than quadratic curvature decay

� Chen–Chen (2015): ALH spaces with linear volume growth and
“stretching-the-neck” degenerations
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ALG and ALH gravitational instantons

Examples with quadratic curvature decay

� Gibbons–Hawking ansatz on (R2
z × S1)/Z2 or (Rs × T 2)/Z2

h = 2b
2π log |z |, h = 2b

2π |s|

Degenerations of complex K3 surfaces
� Kulikov model π : X → △ (X smooth, KX ≃ OX , π−1(0) reduced snc)

� Type I: π−1(0) smooth
� Type II: π−1(0) chain of k ≥ 2 surfaces, rational surfaces at either end,

elliptic ruled surfaces in the middle, double curves smooth elliptic curves
� Type III: π−1(0) rational surfaces meeting along cycles of rational curves;

dual graph is a triangulation of S2

� after hyperkähler rotation Gross–Wilson is Type III

� Kobayashi (1990): speculations about metric realisation of degenerations
using ALG and ALH spaces
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