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The isoperimetric problem in general relativity
Constant mean curvature surfaces into the euclidean space

Let Σ ⊂ R3 be an oriented surface.

Definition
The quadratic form on TpΣ defined by

IIp(~v) := −〈d ~Np(~v), ~v〉,

is called the second fundamental quadratic form of Σ.

Definition
We define two maps K et H, namely the Gauss and the mean
curvature, as follows

K (p) = det(d ~Np)

and
H(p) =

1
2
trace(d ~Np).
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~N(p)

~v(p)

p

tf ~N

H = κ1+κ2
2 and K = κ1κ2

A′(0) = −2
∫

Σ
f H dΣ et V ′(0) =

∫
Σ
f dΣ

Theorem
Surfaces which minimize their area with a fixed volume(isoperimetric
surfaces) have constant mean curvature.
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Constant mean curvature surfaces into the euclidean space
Classification of CMC into R3

Theorem (Hopf 1951)

Let S be a compact simply connected surface with constant mean
curvature, then it is a round sphere.

Theorem (Aleksandrov 1956)

Let S be a compact embedded surface with constant mean
curvature, then it is a round sphere

This hypothesis are optimal.

Theorem (Wente 1983)

There exists an immersion of T 2 into R3 whose image has constant
mean curvature.

Kapouleas proved in the 90’ that there are CMC surfaces of arbitrary
genus.
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Classification of CMC into R3

Second variation of the area:

A′′(0) = −
∫

Σ
f (∆f + ‖II‖2f )dΣ.

A CMC is (weakly) stable if for all f ∈ C∞c (Σ) (with
∫
f = 0) then∫

Σ
‖II‖2f 2dΣ ≤

∫
Σ
‖∇f ‖2dΣ

Theorem (Fischer-Colobrie, Schoen, 82,Barbosa, Do Carmo, 84)

The only (weakly) stable CMC (complete) surfaces of R3 are planes
and round spheres.



The isoperimetric problem in general relativity
Constant mean curvature surfaces into the euclidean space
Classification of CMC into R3

Second variation of the area:

A′′(0) = −
∫

Σ
f (∆f + ‖II‖2f )dΣ.

A CMC is (weakly) stable if for all f ∈ C∞c (Σ) (with
∫
f = 0) then∫

Σ
‖II‖2f 2dΣ ≤

∫
Σ
‖∇f ‖2dΣ

Theorem (Fischer-Colobrie, Schoen, 82,Barbosa, Do Carmo, 84)

The only (weakly) stable CMC (complete) surfaces of R3 are planes
and round spheres.



The isoperimetric problem in general relativity
Constant mean curvature surfaces into the euclidean space
Classification of CMC into R3

Second variation of the area:

A′′(0) = −
∫

Σ
f (∆f + ‖II‖2f )dΣ.

A CMC is (weakly) stable if for all f ∈ C∞c (Σ) (with
∫
f = 0) then∫

Σ
‖II‖2f 2dΣ ≤

∫
Σ
‖∇f ‖2dΣ

Theorem (Fischer-Colobrie, Schoen, 82,Barbosa, Do Carmo, 84)

The only (weakly) stable CMC (complete) surfaces of R3 are planes
and round spheres.



The isoperimetric problem in general relativity
CMC in the Riemannian setting, the role of scalar curvature

contents

1 Constant mean curvature surfaces into the euclidean space

2 CMC in the Riemannian setting, the role of scalar curvature

3 General Relativity frame work: Asymptotic flatness, mass, center
of mass

4 Huisken-Yau and Ye canonical foliations

5 Perspectives



The isoperimetric problem in general relativity
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The pertubative setting

Theorem (Ye, 1991)

Let (N , g) be a Riemannian manifold and p ∈ N a non-degenerate
critical point of the scalar curvature. Then there exists a surface
with constant mean curvature in every neighborhood of p.

We can relax the hypothesis of non-degeneracy for existence: Pacard
et Xu 2009.
This condition is also necessary, Laurain 2011.
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The pertubative setting

Theorem (Johnson & Morgan, 2000)

Let (N , g) be a compact Riemannian manifold. Then isoperimetric
domains of small volume are nearly round spheres.

Theorem (Druet, 2002)

Let (N , g) be a compact Riemannian manifold and ΩV a sequence
of isoperimetric domains of volume V , then

ΩV → p as V → 0,

where p is a point of maximum of the scalar curvature.
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The isoperimetric problem in general relativity
CMC in the Riemannian setting, the role of scalar curvature
The global case

The second variation of area is:

A′′(0) = −
∫

Σ
f (∆f + (‖II‖2 + Ricc( ~N, ~N))f )dΣ.

Using Gauss equation it becomes

A′′(0) = −
∫

Σ
f

(
∆f +

(
1
2

(‖II‖2 + R − K

2

)
f

)
dΣ,

where R is the scalar curvature and K the Gaussian curvature.
Hence when the scalar curvature is non-negative we can derive
some topological constraint on Σ. Ror instance,in the compact case,
if H = 0 (stable) the genus is smaller than 1 (Schoen-Yau),
if H is large enough (weakly stable) the genus is smaller than 3
(Rosenberg).
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The isoperimetric problem in general relativity
General Relativity frame work: Asymptotic flatness, mass, center of mass

General Relativity postulates:
The space-time is a (3, 1) Lorentzian Manifold (M̃, g̃).
Free particles travel along time-geodesic.
g̃ satisfies the Einstein equation:

R̃ic − R̃

2
g̃ = 8πT ,

where T is energy momentum tensor.

What are the possible Universe (space slice (M, g))?
To simplify we consider some time-symmetric space-time which is
isolated.
So Mathematically the question is:
What are the asymptotically flat 3-Riemannian manifolds with
non-negative scalar curvature?
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The isoperimetric problem in general relativity
General Relativity frame work: Asymptotic flatness, mass, center of mass

Definition
Let (M, g) be a 3-manifold, it is said to be Asymptotically Flat (AF)
(with one end), if there exists a compact K such that M \ K is
diffeomorphic to R3 \ B(0, 1) and in those coordinates

g = δij + O2(|x |−τ ),

with τ > 1
2 .

Theorem (Arnowitt, Deser, Misner, 61 , Bartnik, Chrusciel, 80’)

Let (M, g) be an asymptotically flat manifold such that R ∈ L1,
then the following limit exists

lim
R→+∞

1
16π

∫
S(0,R)

(gij ,i − gii ,j)ν
j dσ,

moreover it depends only on the metric. Let denote it m for mass.
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The isoperimetric problem in general relativity
General Relativity frame work: Asymptotic flatness, mass, center of mass

Theorem (Schoen-Yau, 79)

Let (M, g) be an AF manifold with nonnegative scalar curvature.
Then m ≥ 0 with equality if and only if M is isometric to R3.



The isoperimetric problem in general relativity
General Relativity frame work: Asymptotic flatness, mass, center of mass

The unique rotationally invariant solution of Einstein-Equation is

given by the space slice R3 \ {0},
(
1 + m

2|x |

)4
δij is an AF manifold

with vanishing scalar curvature and mass m. It is the Schwarzschild
metric.

Definition
A 3-manifold (M, g) is said to be Schwarzschildean (with one end),
if there exists a compact K such that M \ K is diffeomorphic to
R3 \ B(0, 1) and in those coordinates

g =

(
1 +

m

2|x |

)4

δij + O2(|x |−2).

The mass is unchanged by translation, considering

R3 \ {p},
(
1 + m

2|x−p|

)4
δij .

But can we detect the "center" of this translated version of
Schwarzschild?
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The isoperimetric problem in general relativity
General Relativity frame work: Asymptotic flatness, mass, center of mass

Definition
Let (M, g) be an AF manifold, such that

|gij − δij |+ |x ||Γk
ij |+ |x |2|Ricij |+ |x |

5
2 |S | ≤ C

|x |
1
2+ε

.

Then it satisfies the weak Regge-Teitelboim condition, if

|g(x)− g(−x)|+ |x ||Γ(x) + Γ(−x)| ≤ C

|x |1+ε
.

It satisfies the strong Regge-Teitelboim condition, if

|g(x)− g(−x)|+ |x ||Γ(x) + Γ(−x)|

+ |x |2|Ric(x)− Ric(−x)|+ |x |
5
2 |S(x)− S(−x)| ≤ C

|x |
3
2+ε

.
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General Relativity frame work: Asymptotic flatness, mass, center of mass

Theorem (Beig, O’Murchadha, 90)

Let (M, g) an AF manifold satisfying the strong RT condition, with
non vanishing mass, then the following limit exists

lim
R→+∞

1
16πm

∫
S(0,R)

(gij ,i − gii ,j)ν
jxα − (giαν

i − giiν
α) dσ,

moreover it depends only on the metric. Let denote it CαADM for the
center of mass.

The strong RT condition has been proved to be optimal by
Cederbaum & Nerz (13): Constructing metric with divergent center
of mass.
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The isoperimetric problem in general relativity
Huisken-Yau and Ye canonical foliations
Existence

Theorem (Christodoulou-Yau, 88)

Let (M, g) be a 3-manifold with none-negative scalar curvature,
then the Hawking quasi-local mass

m(Σ) =

√
|Σ|
16π

(
1− 1

4π

∫
Σ
H2 dσ

)
of a closed stable CMC is non negative.

Theorem (Huisken-Yau 96, Ye 97)

Let M be a Schwarzschildean manifold with positive mass, then for
R large enough we can perturb the sphere S(0,R) into a stable
CMC surface ΣR . Those spheres form a foliation.

Improvements: L.H. Huang, J. Metzger and finally C. Nerz(14) who
prove the existence into an AF manifold.
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The isoperimetric problem in general relativity
Huisken-Yau and Ye canonical foliations
Existence

Using this foliation ΣR , you can take the following limit

CαHY = lim
R→∞

∫
ΣR

xα dσ∫
ΣR

dσ
,

As a new definition of center of mass.

In Foliations by stable spheres with constant mean curvature for
isolated systems without asymptotic symmetry. Calc. Var. Partial
Differential Equations 54 (2015), no. 2, 1911–1946. , Nerz proved,
under the weak RT conditions that, as soon one definition is valid,
the second one is also and

CHY = CADM .

The foliation provide also some kind of intrinsic coordinates, what
about uniqueness?
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∫
ΣR

xα dσ∫
ΣR

dσ
,
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Uniqueness

Theorem (Qing, Tian, 07)

Let (M, g) a Schwarzschildean manifold with positive mass. Then
exists a compact set K such that stable CMC spheres which
separates the infinity from K coincide with the leafs of the CMC
foliation.

Improvements:
Ma (10) AF+ Strong RT, Ma(16) |g − δ| = O4(r−1) and
|S | = O(r−3+ε), Laurain-Metzger(17 under the weak RT.

A sequence of spheres which does not separate a compact set from
infity either intersect a compact region or is outlying.
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Global uniqueness

Theorem (Carlotto, Chodosh and Eichmair,16)

Let (M, g) be a complete 3 Manifold, Schwarschildean with positive
mass and with none negative curvature. Then for every compact K
there exists αK > 0 such that if Σ is a stable constant mean
curvature surfaces then, with |Σ| ≥ αK , then Σ is disjoint from K .

Consequence: to get global uniqueness, we need to exclude the
outlying case .
It is a consequence of the following quantitative version of the
Positive Mass Theorem

Theorem (Carlotto, Chodosh and Eichmair,16)

Let (M, g) be a complete 3 Manifold, Schwarschildean with positive
mass and with none negative curvature and which has horizon
boundary. The the only complete stable minimal embeddings are
embeddings of components of the horizon.
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Global uniqueness

The assumption on the positive mass and the Schwarschildean
asymptotic flatness can’t be drop due to the following theorem

Theorem (Carlotto, Schoen, 16)

Given a scalar-flat asymptotically flat metric g there exist cones and
scalar-flat asymptotically flat metrics which coincides with g inside
of the cones and are flat outside slightly larger cones.

Here the decay of metric is τ ∈ (1/2, 1).
See, Anti-gravity à la Carlotto-Schoen, Piotr T. Chruściel, Séminaire
Bourbaki.
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Outlying sphere

Theorem (Brendle, Eichmair, 14)

There is a complete Riemannian 3-manifold (M, g) that is
Schwarschildean with mass m > 0 which admits a sequence of
arbitrary large outlying stable constant mean curvature surfaces Σk .

Theorem (Brendle and Eichmair, 14)

Let (M, g) be a complete Riemannian 3-manifold that is
Schwarschildean with mass m > 0 in the following sense

gij =
(
1 +

m

2r

)4
δij + Tij + o4(r−2)

where T is an homogeneous tensor of degree −2. If the scalar
curvature satisfy R ≥ −o(r−4), there is no sequence of outlying
stable constant mean curvature surfaces Σk such that
lim
k

d(Σk , 0)Hk ∈ (0,∞) .
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Outlying sphere

Theorem (Chodosh and Eichmair,17)

Let (M, g) be a complete 3 Manifold, Schwarschildean with positive
mass and with none negative curvature. We fix K a compact set,
then there exists η > 0, such that for every outlying stable constant
mean curvature surface Σ, we have

d(Σ,K )HΣ ≥ η.

To get global uniqueness it suffices to exclude outlying surface whose
distance to origin is much bigger than the diameter.
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Outlying sphere

Theorem (Chodosh and Eichmair,17)

Let (M, g) be a complete 3 Manifold, Schwarschildean with positive
mass and with none negative curvature, which satisfies either

R ≡ 0

or

x ix j∂i∂jR ≥ 0 outside a compact set

Then any stable constant mean curvature surface with area large
enough is part of the canonical foliation.
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Back to the isoperimetric case

Theorem (O. Chodosh, M. Eichmair, Y. Shi, and H. Yu , 16)

Let (M, g) be a complete Riemannian 3-manifold that is
asymptotically flat and which has non-negative scalar curvature.
Unless (M, g) is isometric to flat R3, for every sufficiently large
V > 0, there is a unique surface of least area that encloses volume
V in (M, g). This surface is a leaf of the canonical foliation.

The tools to prove this theorem is the study of the behavior of the
Hawking mass, which is in a certain sense encode the defect of the
isoperimetric ratio, this idea was introduce by Bray.
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Back to the isoperimetric case

Theorem (Bray, 98)

In the exact Schwarzschild geometry, with m > 0, the spherically
symmetric spheres minimize the area among all other surfaces in
their homology class containing the same volume(separating them
from the horizon).

Theorem (Brendle, 13)

Every closed embedded constant mean curvature surface in the exact
Schwarzschild, with m > 0, geometry is a spherically symmetric
sphere.

Note that this result does not require the surfaces to be large or
stable. It can be seen as a very general version of the Alexandrov
theorem, since it also holds to be true in some general wrapped
product with non-negative "curvature".
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Why about about maximizing the Hawking mass with respect to
fixed area?

It seems more "physical".
Willmore surfaces.
A new quasi-local mass ?
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Thank you for your attention!


