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Some notational remarks on the curvature bounds

Let (Mn, g) be an n-dimensional Riemannian manifold. Denote
Sec the sectional curvature and Ric the Ricci curvature.

I For K ∈ R, we write Sec ≥ K (resp. ≤ K ) if for every p ∈ M
and every 2-dim plane Π ⊂ TpM it holds
Secp(Π) ≥ K (resp. ≤ K ).

I Ricp : TpM × TpM → R is a quadratic form. We write
Ric ≥ K (resp. ≤ K ) if the quadratic form Ricp − Kgp is
non-negative (resp. non-positive) definite at every p ∈ M.

I Examples:
I n-dimensional euclidean space: Sec ≡ 0, Ric ≡ 0.
I n-dimensional round sphere of radius 1: Sec ≡ 1, Ric ≡ n − 1.
I n-dimensional hyperbolic space: Sec ≡ −1, Ric ≡ −(n − 1).
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Some basics of comparison geometry

Question: (M, g) smooth Riemannian manifold.
If we assume some upper/lower bounds on the sectional or on the
Ricci curvature what can we say on the analysis/geometry of
(M, g)?

I Upper/Lower bounds on the sectional curvature are strong
assumptions with strong implications E.g. Cartan-Hadamard
Theorem (if Sec ≤ 0 then the universal cover of M is
diffeomorphic to RN), Topogonov triangle comparison
theorem( definition of Alexandrov spaces: non smooth
spaces with upper/lower bounds on the ”sectional
curvature”), etc.

I Upper bounds on the Ricci curvature are very (too) weak
assumption for geometric conclusions. E.g. Lokhamp
Theorem (Gao-Yau, Brooks in dim 3): any closed manifold of
dim≥ 3 carries a metric with negative Ricci curvature.
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Some basics of comparison geometry: lower Ricci bounds

Lower bounds on the Ricci curvature: natural framework for
comparison geometry

I Bishop-Gromov volume comparison: (not most general form)
If (Mn, g) has Ric ≥ 0 then for all x ∈ M

R 7→ volg(BR(x))

ωnRn
is monotone non-increasing

I Laplacian comparison,

I Cheeger-Gromoll splitting,

I Li-Yau inequalities on heat flow,

I Levy-Gromov isoperimetric inequality,

I . . .



Non smooth setting: Origins of the topic

Gromov in the ’80ies

I introduced a notion of convergence for Riemannian manifolds,
known as Gromov-Hausdorff convergence (for non-compact
manifolds, more convenient a pointed version, called pointed
Gromov-Hausdorff convergence  GH-convergence of metric
balls of every fixed radius)

I observed that a sequence of Riemannian n-dimensional
manifolds satisfying a uniform Ricci curvature lower bound is
precompact, i.e. it converges up to subsequences to a possibly
non-smooth limit space (called, from now on, Ricci limit
space)

• Natural question: what can we say about the compactification of
the space of Riemannian manifolds with Ricci curvature bounded
below (by, say, minus one)?
•Hope: useful also to establish properties for smooth manifolds.
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Semi-smooth setting

I Cheeger-Colding 1997-2000 three fundamental papers on JDG
on the structure of Ricci limit spaces.

I Collapsing: limk volgk (B1(x̄k)) = 0  loss of dimension in the
limit. More difficult, nevertheless they proved that the limit
space has a uniquely defined volume measure (up to scaling)
and a.e. point has a euclidean tangent space (the dimension
may vary from point to point). Such points are called regular
points, the complementary is called singular set.

I Non collapsing: lim infk volgk (B1(x̄k)) > 0. More results: the
Hausdorff dimension passes to the limit one can prove finer
estimates on the singular set, e.g. Haudorff codimension 2.

I Colding-Naber, Annals of Math. 2012: the dimension of the
tangent space does not change on the regular set, even in the
collapsed case.
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Extrinsic Vs Intrinsic

I The approach of Gromov-Cheeger-Colding to Ricci curvature
for non-smooth spaces is a non-intrinsic point of view:
consider the non smooth spaces arising as limits of smooth
objects. Dichotomy collapsing-non collapsing. Very powerful
for local structural properties.

I Analogy: like defining W 1,2 as completion of C∞ endowed
with W 1,2-norm.

I But W 1,2 can be defined also in completely intrinsic way
without passing via approximations (very convenient for doing
calculus of variations).

I GOAL: define in an intrisic-axiomatic way a non smooth space
with Ricci curvature bounded below by K and dimension
bounded above by N (containing ricci limits no matter if
collapsed or not).
 weak version of a Riemannian manifold with Ric≥ K ;
analogy with GMT (currents, varifolds,etc.)
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Preliminary Observation

I sectional curvature bounds for non smooth spaces make
perfect sense in metric spaces (X , d) (Alexandrov spaces):
sectional curvature is a property of lengths (comparison
triangles)

I Ricci curvature is a property of lenghts and volumes: needs
also a reference volume measure
 natural setting metric measure spaces (X , d,m).
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Non smooth setting 1: the Kantorovich-Wasserstein space

Notations:

I (X , d,m) compact metric space (for simplicity, but everything
holds for complete and separable, with appropriate changes)
with a finite non-negative Borel measure m (σ-finite would be
enough)

I Let

P(X ) := {µ : µ ≥ 0, µ(X ) = 1} = Probability measures.

I Given µ1, µ2 ∈ P(X ), define the (Kantorovich-Wasserstein)
quadratic transportation distance

W 2
2 (µ1, µ2) := inf

{∫
X×X

d2(x , y) γ(dxdy)

}
where γ ∈ P(X × X ) with (πi )]γ = µi , i = 1, 2

I (P(X ),W2) is a metric space, geodesic if (X , d) is geodesic .
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Non smooth setting 2: Entropy functionals

I On the metric space (P(X ),W2) consider the Entropy
functionals UN,m(µ) if µ << m

UN,m(ρm) := −N
∫
ρ1− 1

N dm if 1 < N <∞ Reny Entropy

U∞,m(ρm) :=

∫
ρ log ρdm Shannon Entropy

(if µ is not a.c. then if N <∞ the non a.c. part does not
contribute, if N = +∞ then set U∞,m(µ) =∞.)



Non smooth setting: intrinsic-axiomatic definition. 2

I Crucial observation
[CorderoErausquin-McCann-Schmuckenshlager ’01,
Otto-Villani ’00, Sturm-Von Renesse ’05]
If (X , d,m) is a smooth Riemannian manifold (M, g), then
Ric ≥ 0 (resp. ≥ K ) iff the entropy functional U∞,m is
(K -)convex along geodesics in (P(X ),W2). i.e. for every
µ0, µ1 ∈ P(X ) there exists a W2-geodesic (µt)t∈[0,1] such that
for every t ∈ [0, 1] it holds

U∞,m(µt) ≤ (1−t)U∞,m(µ0)+tU∞,m(µ1)−K

2
t(1−t)W2(µ0, µ1)2.

I Notice that the notion of (K -)convexity of the Entropy makes
sense in a general metric measure space (X , d,m).

I DEF of CD(K ,N) condition [Lott-Sturm-Villani ’06]: fixed
N ∈ [1,+∞] and K ∈ R, (X , d,m) is a CD(K ,N)-space if the
Entropy UN,m is K -convex along geodesics in (P(X ),W2) (for
finite N is a “distorted” (K ,N)-geod. conv.).
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Non smooth setting: intrinsic-axiomatic definition. 3

Keep in mind:
- CD(K ,N) definition Ricci curvature ≥ K and dimension ≤ N
in an intrinsic/axiomatic way for metric measure spaces

- the more convex is UN,m along geodesics in (P2(X ),W2), the
more the space is positively Ricci curved.

Good properties:

I CONSISTENT: (M, g) satisfies CD(K ,N) iff Ric ≥ K and
dim(M) ≤ N

I STABLE under mGH convergence =⇒ all Ricci limit spaces
are CD(K ,N) no matter if collapsing or not.

I GEOMETRIC PROPERTIES: many classical comparison
thms, e.g. Bishop-Gromov, holds for CD(K ,N) spaces.

I There are examples of Finsler manifolds which are CD spaces,
e.g. (Rn, ‖ · ‖, λn) is CD(0, n) for any norm ‖ · ‖.
 CD(K ,N) spaces roughly are “possibly non-smooth Finsler
manifolds with Ricci ≥ K and dimension ≤ N”
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Non completely satisfactory feature of CD(K ,N)

I FACT: If a smooth Finsler manifold M is a Ricci-limit space
then M is Riemannian (Cheeger-Colding ’00).

 the class of
CD(K ,N) is, in some sense, too large.

I Moreover, and maybe more importantly, some fundamental
theorems in comparison geometry of Riemannian manifolds
(e.g. Cheeger-Gromoll Splitting Theorem) are not true in the
larger Finsler category (e.g. (R2, ‖ · ‖∞) is CD(0, 2), contains
a line but does not split isometrically).

I  We would like to reinforce the CD(K ,N) condition in order
to isolate the “Riemannian” CD(K ,N) spaces; in other words,
we wish to rule out Finsler structures, but in a sufficiently
weak way in order to still get a STABLE notion under mGH
convergence.
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Cheeger energy and RCD(K ,N) spaces

I Given a m.m.s. (X , d,m) and f ∈ L2(X ,m), define the
Cheeger energy

Chm(f ) :=
1

2

∫
X
|∇f |2w dm = lim inf

u→f inL2

1

2

∫
X

(lipu)2dm

where |∇f |w is the minimal weak upper gradient.

I Crucial observation: On a Finsler manifold M, the Cheeger
energy is quadratic (i.e. parallelogram identity holds) iff M is
Riemannian.

I Idea(Ambrosio-Gigli-Savaré): Reinforce the CD condition by
asking that the Cheeger energy is quadratic.

Definition
Given K ∈ R and N ∈ [1,∞], (X , d,m) is an RCD(K ,N) space if
it is a CD(K ,N) space & the Cheeger energy is quadratic.
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Good properties of RCD(K ,N)

I Stability under pmGH convergence (Ambrosio-Gigli-Savaré
and Gigli-M.-Savaré)

I Equivalent to contractivity (EVI) of heat flow in W2 in case
N =∞ (Ambrosio-Gigli-Savaré, Ambrosio-Gigli-M.-Rajala)

I Equivalent to Bochner inequality (for N =∞
Ambrosio-Gigli-Savaré, for N ∈ [1,∞) Erbar-Kuwada-Sturm
Vs Ambrosio-M.-Savaré)

I Implies Li-Yau inequalities (Garofalo-M. and Jiang)
I Implies Cheeger-Gromoll Splitting Theorem (Gigli)
I Local structure: euclidean tangent cones (Gigli-M.-Rajala and

M.-Naber), rectifiability (M.-Naber), a.e. unique dimension of
tangent cones (Brué-Semola)

I Implies that Isometries are a Lie Group (Guijarro-Rodriguez,
Sosa)

I Implies existence of a universal cover + classical Theorems on
the (revised) fundamental group (M.-Wei)

I Local to Global (Ambrosio-M.-Savaré, Cavalletti-Milman)



Good properties of RCD(K ,N)

I Stability under pmGH convergence (Ambrosio-Gigli-Savaré
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N =∞ (Ambrosio-Gigli-Savaré, Ambrosio-Gigli-M.-Rajala)

I Equivalent to Bochner inequality (for N =∞
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N =∞ (Ambrosio-Gigli-Savaré, Ambrosio-Gigli-M.-Rajala)

I Equivalent to Bochner inequality (for N =∞
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Ambrosio-Gigli-Savaré, for N ∈ [1,∞) Erbar-Kuwada-Sturm
Vs Ambrosio-M.-Savaré)
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Examples of RCD-spaces

I Ricci limits, no matter if collapsed or not and no matter if the
dimension is bounded above or not (in the first case get
RCD(K ,N), in the latter get RCD(K ,∞))

I Finite dimensional Alexandrov spaces with curvature bounded
below (Perelman 90’ies and Otsu-Shioya ’94: Ch is quadratic,
Petrunin ’12: CD is satisfied)

I Weighted Riemannian manifolds with Bakry-Émery
N − Ricci ≥ K : i.e. (Mn, g) Riemannian manifold, let
m := Ψ volg for some smooth function Ψ ≥ 0, then

Ricg ,Ψ,N := Ricg − (N − n)∇
2Ψ1/N−n

Ψ1/N−n ≥ Kg
iff (M, dg ,m) is RCD(K ,N).

I Cones or spherical suspensions over RCD(N − 1,N)spaces
(Ketterer)

I Quotients, orbifolds, metric-measure foliations with Ricci
bounded below (GalazGarcia-Kell-M.-Sosa).

I Stratified spaces with Ricci bounded below and cone
angle≤ 2π (Bertrand-Ketterer-Mondello-Richard).

I . . .



Examples of RCD-spaces

I Ricci limits, no matter if collapsed or not and no matter if the
dimension is bounded above or not (in the first case get
RCD(K ,N), in the latter get RCD(K ,∞))

I Finite dimensional Alexandrov spaces with curvature bounded
below (Perelman 90’ies and Otsu-Shioya ’94: Ch is quadratic,
Petrunin ’12: CD is satisfied)

I Weighted Riemannian manifolds with Bakry-Émery
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A geometric application:
Quotients by isometric group actions
and lower Ricci bounds



Isometric group actions

I (M, g) smooth Riemannian manifold.

I Iso(M, g) = group of isometries of (M, g). It is well known
Iso(M, g) is a Lie Group.
Fix G < Iso(M, g) compact subgroup.

I x ' y iff ∃Φ ∈ G with Φ(x) = y is an equivalence relation.

I Let M∗ := M/G be the space of orbits. Let p : M → M∗ be
the quotient map. Define a distance

d∗(x∗, y∗) := inf
x∈p−1(x∗),y∈p−1(y∗)

d(x , y),

and a measure m∗ := p](volg ).

THM[Burago-Gromov-Perelman ’92]: If (M, g) has Sec ≥ K then
(M∗, d∗) is an Alexandrov space with Curv≥ K .
Q: If (M, g) has Ricg ≥ Kg , is the same true for the quotient
space?
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A special case

I If G acts freely (i.e no fixed points), then M∗ is a smooth
manifold and d∗ is induced by a Riemannian metric g∗.
Moreover p : (M, g)→ (M∗, g∗) is a Riemannian submersion.

I So the problem amounts to answer:

Ricg ≥ Kg
?⇒ Ricg∗ ≥ Kg∗.

I Pro-Wilhelm: the answer is NO. They give examples of
Riemannian submersions from compact manifolds with
positive Ricci curvature to manifolds that have small
neighborhoods of (arbitrarily) negative Ricci curvature.

I Q: maybe the (M∗, g∗) does not have Ricg∗ ≥ Kg∗ but the
weighted manifold (M∗, g∗,m∗) has Bakry-Emery Ricci tensor
bounded below by K?

I Lott: YES!

I Q: what about the general case when the quotient space is
not smooth?
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Our result

THM[Galaz Garcia-Kell-M.-Sosa’17] Let (M, g) be a smooth
N-dimensional Riemannian manifold with Ricg ≥ K g .
Then (M∗, d∗,m∗) is an RCD(K ,N)-space.

RK: previous work by Lott-Villani proving that (M∗, d∗,m∗) is
CD(K ,∞) or, in case K = 0, is CD(0,N) under the assumption
that M is compact. Apart from removing the compactness
assumption and considering an arbitrary lower bound K , the
geometric new content is that the quotient is infinitesimally
hilbertian.
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Conclusion of first lecture

In doing Riemannian geometry one naturally encounters non
smooth spaces

I when taking limits of Riemannian manifolds (procedure used
often, e.g. contradiction arguments, blow up arguments,
singularities in geometric flows),

I when taking quotients, cones, foliations of Riemannian
manifolds.

If the smooth spaces we started with have Ricci bounded below,
then the non smooth spaces arising are RCD.

→ RCD(K ,N) spaces can be seen as an extension of the class of
smooth Riemannian manifolds with Ricci ≥ K , which is closed
under many natural geometric and analytic operations.
Next lecture we will see some smooth appications.
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