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Plan of the talk

GOAL: discuss some recent geometric applications to smooth
Riemannian manifolds of non-smooth synthetic Ricci curvature
lower bounds

I Quantitative Levy-Gromov isoperimetric inequality,

I Almost Euclidean isoperimetric inequality in a small ball in a
manifold with Ricci curvature bounded below, motivated by
Ricci flow.
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Isoperimetric problem

One of oldest problems in mathematics, roots in myths of 2000
years ago (Queen Dido’s problem).
Q: Given a space X and a volume v , what is the minimal amount
of (boundary) area needed to enclose the volume v > 0?

Examples

I X = Rn  Euclidean isoperimetric inequality:
For all E ⊂ Rn it holds |∂E | ≥ |∂B| where B is a round ball
s.t. |B| = |E |.

I X = Sn analogous:
For all E ⊂ Sn it holds |∂E | ≥ |∂B| where B is a metric ball
(i.e. a spherical cap) s.t. |B| = |E |

RK: In both of the examples the space is fixed (Euclidean space of
Sphere), such a space contains a model subset (metric ball), and
any subset of the space is compared with such a model subset.
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Levy-Gromov inequality

Besides the euclidean one, probably the most famous isoperimetric
inequality is the Levy-Gromov isoperimetric inequality:

Levy-Gromov Isoperimetric inequality
Let (Mn, g) be a Riemannian manifold with Ricg ≥ (n − 1)g and
E ⊂ M domain with smooth boundary ∂E .

Let Sn be the round sphere of unit radius (in particular

Ric ≡ n − 1), and B ⊂ Sn be a metric ball s.t. |E ||M| = |B|
|Sn| . Then

|∂E |
|M|

≥ |∂B|
|Sn|

RK. (1) In the (LGI) the space is NOT fixed: any subset in any
manifold with Ric ≥ n − 1 is compared with the model subset (i.e.
spherical cap) in the model space (i.e. the sphere).
(2) (LGI) is global in the space, i.e. it does not depend just on E
but also on M \ E : if one changes the space locally outside of E ,
the lhs in (LGI) may change since |M| may change.
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Equivalent way to state LG inequality in terms of
isoperimetric profile

I Given a Riemannian manifold (M, g), define its isoperimetric
profile function as

I(M,g)(v) := inf

{
|∂E |
|M|

:
|E |
|M|

= v

}
, ∀v ∈ [0, 1].

I Levy-Gromov Inequality can be stated as: Given (Mn, g) with
Ricg ≥ (n − 1)g then

I(M,g)(v) ≥ ISn(v), ∀v ∈ [0, 1].
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Rigidity and almost rigidity in the Levy-Gromov inequality

I Rigidity: If there exists E ⊂ M with |E |
|M| = v ∈ (0, 1)

satisfying |∂E ||M| = I(M,g)(v) = ISn(v), then

1) (Mn, g) ' Sn isometric
2) E ' B metric ball.

I Question: Stability? i.e. If “=” in (LGI ) is almost attained,
Q1) What can we say on (Mn, g)? Is it close to a sphere? In
which sense?
Q2) What can we say on E? Is it close to a metric ball? In
which sense?
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About Question Q1

THM 1 (Particular case of Berard-Besson-Gallot, Inv. Math, 1985)
Given (Mn, g) with Ricg ≥ (n − 1)g and diam(M) = D (recall
from Bonnet-Myers D ∈ (0, π)) then

I(M,g)(v)

ISn(v)
≥

(∫ π/2
0 (cos t)n−1dt∫ D/2
0 (cos t)n−1dt

)1/n

RK:
1) rhs is ≥ 1 so the result sharpens the classical LGI
2) It follows that there exists Cn,v > 0 such that if for some
v ∈ (0, 1) it holds I(M,g)(v) ≤ ISn(v) + δ, then

π − D ≤ Cn,vδ
1/n.
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Answering Question 2 in Euclidean setting

Quantitative Euclidean Isoperimetric Inequality
(Fusco-Maggi-Pratelli, Annals of Math. 2008)
There exists Cn > 0 such that for every E ⊂ Rn there exists a
round ball B ⊂ Rn with |E | = |B| and

|E∆B|
|E |

≤ Cn

(
|∂E |
|∂B|

− 1

)1/2

RK: 1) the rhs is the so-called “isoperimetric deficit” and is zero iff
E is a ball (by rigidity in EII).
2) The proof of FMP is via a “quantitative symmetrization”.
3) Alternative proof of the result via Brenier L2-Optimal Transport
map (by Figalli-Maggi-Pratelli, Inv. Math. 2010) and via regularity
theory and selection principle (Cicalese-Leonardi, ARMA 2012).
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Answering Question 2 in spherical setting

Quantitative Spherical Isoperimetric Inequality
(Bogelein-Duzaar-Fusco, Adv. Calc. Var. 2015)
For every v ∈ (0, 1) and every n ≥ 2 there exists Cn,v > 0 with the
following property.
For every E ⊂ Sn with |E |

|Sn| = v there exists a metric ball B ⊂ Sn

with |B| = |E | such that

|E∆B| ≤ Cn,v

(
|∂E |
|Sn|

− ISn(v)

)1/2

Proof: along the same lines of Cicalese-Leonardi’s selection
principle.
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Difficulties about Question 2: quantitative Levy-Gromov
inequality

The above quantitative isoperimetric inequalities are for a fixed
space (Rn or Sn), with the highest possible degree of symmetry.
LGI is for any (Mn, g) with Ricg ≥ (n − 1)g
 No fixed space and no symmetry.
 The above approaches seem not to be applicable:

I Symmetrization (FMP): since M is not symmetric it makes
little sense to speak of symmetrization.

I Brenier Map, L2-OT (FMP): works in Rn but already in Sn it
is an open problem to prove Spherical Isoperimetric Inequality
via Brenier Map.

I Selection Principle (CL): would need smooth convergence of
metrics while here the natural convergence is
Gromov-Hausdorff.

 Novel approach: localization via L1-Optimal Transport.
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The result: quantitative Levy-Gromov inequality

THM 2 (Cavalletti-Maggi-M. in press in CPAM)
For every v ∈ (0, 1) and n ≥ 2 there exists Cn,v > 0 with the
following properties.
Let (Mn, g) be with Ricg ≥ (n − 1)g . For every E ⊂ M with
|E |
|M| = v there exists a metric ball B ⊂ M with |B| = |E | such that

|E∆B| ≤ Cn,v

(
|∂E |
|M|

− ISn(v)

) n
n2+n−1

In particular, if E ⊂ M is an isoperimetric subset with |E |
|M| = v ,

then
|E∆B| ≤ Cn,v

(
I(M,g)(v)− ISn(v)

) n
n2+n−1

RK Difference with QEII or QSII: here E ⊂ M and |∂E | is
compared with ISn (not of I(M,g)) via a “Levy-Gromov
isoperimetric deficit”.
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The result holds in higher generality

Actually we prove THM1 and THM 2 more generally for
RCD(N − 1,N) metric measure spaces spaces. As we saw in the
first lecture, examples entering this class of spaces:

I mGH-limits of Riemannian N-dimensional manifolds satisfying
Ricg ≥ (N − 1)g .

I N-dimensional Alexandrov spaces with curvature ≥ 1.



Part 2. Ricci flow, Perelman’s Pseudo
Locality Theorem and Almost
euclidean isoperimetric inequalities.



Perelman’s Pseudo-locality Theorem

THM[Theorem 10.1, Perelman’s first Ricci flow paper 2002]

For
every α > 0 there exists δ > 0, ε > 0 with the following property.
Suppose we have a smooth solution to the Ricci flow
(gij)t = −2Rij , 0 ≤ t ≤ ε2, and assume that at t = 0 we have

Rg0(x) ≥ −1 & |∂Ω|g0 ≥ (1− δ) cn|Ω|(n−1)/ng0 , ∀x ,Ω ⊂ B1(x0),

where cn is the euclidean isoperimetric constant.
Then we have an estimate |Rm|(x , t) ≤ αt−1 + ε−2 whenever
0 < t ≤ ε2, dgt (x , x0) < ε.

RK: The non-linearity of Ricci flow here helps: if we have good
geometric control on ball, and no assumtions outside, the Ricci
flow for small times improves the geometric control in the ball
regardless how bad the manifold is outside.
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Perelman’s Pseudo-locality Theorem revisited by
Tian&Wang

THM[Tian-Wang JAMS 2015]

For every α > 0 there exists
δ > 0, ε > 0 with the following property. Suppose we have a
smooth solution to the Ricci flow (gij)t = −2Rij , 0 ≤ t ≤ ε2, and
assume that at t = 0 we have

Ricg0(x) ≥ −δ2g0 on B1(x0) & |B1(x0)|g0 ≥ (1− δ)ωn.

Then |Rm|(x , t) ≤ αt−1 + ε−2 for 0 < t ≤ ε2, dgt (x , x0) < ε.

RK: - From Bishop Gromov we have |B|g0 ≤ (1 + C δ)ωn, so the
condition |B|g0 ≥ (1− δ)ωn is an almost maximal volume
assumption.
-The proof by Tian-Wang is highly technical and not at all a
straightforward corollary of Perelman’s Pseudolocality Theorem.
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Almost euclidean isoperimetric inequality

Q: do the assumptions of Tian-Wang’s Pseudo-locality imply the
assumptions of Perelman’s Pseudo-Locality? I.E.

Ricg0(x) ≥ −δ2g0 & |B|g0 ≥ (1− δ)ωn
?⇒ |∂Ω|ng0 ≥ (1− ε) cn|Ω|n−1g0

for all Ω ⊂ Bε(x0).

THM[Cavalletti-M. IMRN ’18] For every N ∈ [2,∞) ∩ N there
exist ε̄N , δ̄N ,CN > 0 such that the next holds.
Let (M, g) be a smooth N-dim. Riem. manifold and let x̄ ∈ M.
Assume that B1(x̄) is rel. compact and for some δ ∈ [0, δ̄N ]

Ricg ≥ −δ2g on B1(x̄) & |B1(x̄)| ≥ (1− δ)ωN

Then for every subset E ⊂ BεN (x̄):

|∂E |g ≥ Nω
1/N
N (1− CNδ) |E |

N−1
N

g .

RK Actually we prove the corresponding statement more generally
for a m. m. space (X , d,m) which is essentially non-branching,
CDloc(−δ,N) on a ball B1(x̄) and m(B1(x̄)) ≥ (1− δ)ωN .
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Combining Colding’s volume convergence Theorem (Annals of
Math. ’97) with the above result we get:

COR[Cavalletti-M. IMRN ’18] For every N ∈ [2,∞) ∩N there exist
ε̄N , δ̄N ,CN > 0 such that the next holds.
Let (M, g) be a smooth N-dim. Riem. manifold and let x̄ ∈ M.
Assume that B1(x̄) is rel. compact and for some δ ∈ [0, δ̄N ], it
holds:

Ricg ≥ −δ2g on B1(x̄) & dGH(B1(x̄),BRN

1 ) ≤ δ.

Then for every subset E ⊂ BεN (x̄):

|∂E |g ≥ Nω
1/N
N (1− CNδ) |E |

N−1
N

g .

RK closeness in GH-distance is a priori a very weak assumption (a
manifold is δ-GH close to a δ-net which is a discrete space); so it is
remarkable that GH-close + lower Ricci bound ⇒ almost euclidean
isoperimetric inequality.
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Some comments, 1.

Q: Why the almost euclidean isoperimetric inequality was an open
problem?

Classical method for proving Levy-Gromov isoperimetric inequality
in a nutshell:

1. in a compact manifold, for every fixed volume v there is a
minimizer Ω of the perimeter having volume v .

2. ∂Ω is smooth (up to a singular set of large codimension) and
the smooth part has constant mean curvature (the regularity
is now classical but it is not trivial at all!).

3. Using the regularity of ∂Ω (crucial: regular part has CMC)
perform computations  get a lower bound on |∂Ω| (so a
fortiori get a lower bound of the perimeter of any set since Ω
is a minimizer).
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Some comments, 2.

DIFFICULTY If we want to prove an AE isoperimetric ineq on
B1(x̄)

I A minimizing sequence for the perimeter can approach ∂B1(x̄)
and so the minimizer Ω will hit ∂B1(x̄).

I On the contact region we have an obstacle problem, regularity
is more tricky (partial regularity by Caffarelli in 70ies); in any
case ∂Ω ∩ ∂B1(x̄) may not have constant mean curvature (if
∂B1(x̄) has not)

I  not in good shape to perform computations of
Levy-Gromov on the minimizer.
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Some comments, 3.

I What we do: Via 1-D localization, we prove the lower bound
on the perimeter of EVERY subset, not just of the minimizers,
without any regularity assumption.

I  One uses synthetic Ricci curvature lower bounds via
optimal transport to prove a new smooth statement.
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Part 3. Some ideas of the 1D
localization technique



Proof part 1: 1-D localization

Let (X , d,m) be a CD(K ,N) space and assume for the moment
that given E ⊂ X we can find a ”1-D localization” {Xq}q∈Q of X,
i.e.

1. {Xq}q∈Q is (essentially) a partition of X , i.e.

m(X \
⋃̊

q∈QXq) = 0,

2. m =
∫
Q mq α(dq), with α(Q) = 1 and mq(Xq) = mq(X ) = 1

for α-a.e. q ∈ Q
 disintegration of m (kind of non-straight Fubini)

3. Xq is a geodesic in X and (Xq, | · |,mq) is a CD(K ,N) space

4. mq(E ∩ Xq) = m(E ), for α-a.e. q ∈ Q,

RK the first two assumptions are mild, the characterizing
properties are the last two.
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Proof part 2: “proof” of Levy-Gromov inequality

If for a given E ⊂ X we can find a 1-D localization as above then

m+(E ) := lim inf
ε→0+

m(E ε)−m(E )

ε

= lim inf
ε→0+

∫
Q

mq(E ε)−mq(E )

ε
α(dq) by 2.

≥
∫
Q

lim inf
ε→0+

mq(E ε ∩ Xq)−mq(E ∩ Xq)

ε
α(dq) by 2.

≥
∫
Q

lim inf
ε→0+

mq((E ∩ Xq)ε ∩ Xq)−mq(E ∩ Xq)

ε
α(dq),

by E ε ∩ Xq ⊃ (E ∩ Xq)ε ∩ Xq

≥
∫
Q
m+

q (E ∩ Xq)α(dq)

≥
∫
Q
IK ,N(mq(E ))α(dq) by 3.+Smooth LGI (by E. Milman)

=

∫
Q
IK ,N(m(E ))α(dq) by 4. = IK ,N(m(E )).
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Proof part 3: how to construct a 1-D localization

I Recall that m(X ) = 1, fix E ⊂ X with m(E ) ∈ (0, 1),

I Let µ0 := χE
m(E) m and µ1 := 1−χE

1−m(E) m =
χX\E

m(X\E) m

I Consider the L1-optimal transport problem

inf

{∫
X×X

d(x , y) dγ : γ ∈ P(X × X ), (π1)]γ = µ0, (π2)]γ = µ1

}
I By Optimal Transport techniques there exists a minimizer
γ ∈ P(X × X ) and a 1-Lipschitz function ϕ : X → R called
Kantorovich potential such that, denoted

Γ := {(x , y) ∈ X × X : ϕ(x)− ϕ(y) = d(x , y)},
γ is concentrated on Γ.

I The relation ∼ on X given by x ∼ y iff (x , y) ∈ Γ or
(y , x) ∈ Γ is an equivalence relation on X (up to an
m-negligible subset) and the equivalence classes are geodesics.
 partition of X into geodesics driven by E

I More work to prove properties 3. and 4.
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Why L1-trasport?

I It is more standard to consider the L2-optimal transport
problem: given µ0, µ1 ∈ P(X ) let

inf

{∫
X×X

d(x , y)2 dγ : γ ∈ P(X × X ), (π1)]γ = µ0, (π2)]γ = µ1

}
.

Which defines a metric W2 on P(X ).

I If (µt)t∈[0,1] is a W2-geod from µ0 to µ1, then µt
concentrates on t-intermediate points of geodesics from
supp(µ0) to supp(µ1):
µt({γ(t) : γ geod , γ(0) ∈ supp(µ0), γ(1) ∈ supp(µ1)}) = 1,

I moreover, from d2-monotonicity, if γ1 and γ2 are such
geodesics with γ1(0) 6= γ2(0) then γ1(t) 6= γ2(t) in a.e. sense.
 the transport at time t is given by an ess. inj. map.

I BUT it may happen γ1(s) = γ2(t) for s 6= t
 L2-transport does not induce an equivalence relation.

I On the other hand L1 transport does induce an equivalence
relation into rays where the transport is performed
 partition of the space into 1D objects.
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Brief history of 1-D localization technique

The localization technique is a way to reduce an a-priori
complicated high dimensional problem to a simpler 1-dimensional
problem.

I In Rn or Sn, using the high symmetry of the space, 1-D
localizations can be usually obtained via iterative bisections

I Roots in a paper by Payne-Weinberger ’60 about sharp
estimate of 1st eigenvalue of Neumann Laplacian in compact
convex sets of Rn

I Formalized by Gromov-V. Milman ’87, Kannan - Lovász -
Simonovits ’95

I Extended by B. Klartag ’14 to Riemannian manifolds via
L1-optimal trasport: no symmetry but still heavily using the
smoothness of the space (estimates on 2nd fundamental form
of level sets of the Kantorovich potential ϕ)

I Extension to non-smooth spaces by Cavalletti-M. ’15.
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