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The Ricci Flow equation
Mn smooth manifold, dim(Mn) = n.
We reserve the word manifold for connected
manifolds (unless otherwise stated).
∂Mn = ∅
(Mn, g(t))t∈I solves Ricci-Flow (RF) if g is smooth
in space and time and solves

∂

∂t
g(x , t) = −2Rc(g(·, t))(x)

for all x ∈ M for all t ∈ I .
I is an interval.
Rc(g) = the Ricci curvature of g , ( a (0, 2) tensor)
R(g) = scalar curvature of g , (a function)
Rm(g) is the full curvature tensor ( a (0, 4) tensor).
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In the theorems and discussions that follow it could
be that (Mn, g(t)) is not complete and/or not
compact , and/or does not have bounded curvature
for some (or all) t ∈ I . If the solution is complete
then we call it a (CMPL) solution, if it has bounded
curvature, that is supM×I |Rm(g)| <∞, then we
call it a (BC) solution.
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Examples:
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Theorem 1 (Ha. ’82, Shi ’89, )

If (M , g0) is smooth, complete (CMPL) and has
bounded curvature (BC),
k0 := supM |Rm(g0)| <∞, then there exists a
unique (B.-L. Chen, X.-P. Zhu ’06) smooth,
solution (M , g(t))t∈[0,T (n,k0)] to Ricci flow which is
complete for all t ∈ [0,T ] and has
supM×[0,T ] |Rm(g)| <∞. We call a complete
solution to Ricci flow which has bounded curvature
in this sense, a (CMPL) (BC) solution. In fact,
w.l.o.g., the construction guarantees that
supM×[0,T ] |Rm(g)| ≤ 2k0 (doubling estimate).
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Local properties of Ricci Flow
(A simplified version of) Perelman’s Pseudolocality
Theorem vn. 2 says:
If (M , g(t))t∈[0,T ] is (BC) and (CMPL), and and

|Rm(g0)| ≤ 1 on Bg0(x0, 1) and

vol(Bg0(x0, 1) ≥ v0,

then there exists a S(v0, n) > 0 such that,

|Rm(g(t))| ≤ c0(n) on Bg0(x0,
1

2
)

for all t ≤ S(v0, n).
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Local Poperty of RF: Compact subsets of time zero
regular open regions are regular at later small times
(small can be quantified). , if the solution is (BC)
and (CMPL) .
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Regularising effect of RF (A simplified version of)
Perelman’s Pseudolocality Theorem vn. 1 says:
If (Mn, g(t))t∈[0,T ] is (BC) and (CMPL), and
R(g0) ≥ −1 on Bg0(x0, 1) ⊆ M and there are
coordinates ϕ : Bg0(x0, 1)→ ϕ(Bg0(x0, 1)) ⊆ Rn

such that (in these coordinates)
(1− ε)δ ≤ g0 ≤ (1 + ε)δ , where ε ≤ ε0(n) is small
enough, then there exists S(n) > 0 such that

|Rm(g(t))| ≤ α(ε)

t
on Bg0(x0,

1

2
).

for all t ∈ [0, S ] ∩ [0,T ], where α(ε)→ 0 with
ε→ 0.
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Regularising effect of RF Compact subsets of Rough
open regions are smoothed out by (RF) for small
(quantifiable) times if the solution is (BC) and
(CMPL).
eg. n = 2 ∂

∂tR = ∆gR + R2. Reaction-Diffusion
equation.
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Pictures + comparison with heat flow.
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Does the regularising effect smooth out steep cones
(for n = 2, 3)? Yes, if they are almost positively
curved: Global Regularising effect in dimension
n = 2, 3.
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Theorem 2 (Si. ,’11 : Global regularising

effect)

Let (M3, g0) be smooth, and satisfy (BC), (CMPL)
and
a) (global non-collapsedness ) vol(Bg(0)(x , 1)) ≥ v0
for all x ∈ M and
b) Rc(·, 0) ≥ −1. Then the maximal Shi
/Hamilton solution to RF exists for at least

t ∈ [0,T (v0)] and has |Rm|(·, t) ≤ c0(v0)
t , and

Rc(·, t) ≥ −K (v0) for t ∈ [0,T (v0)]. Furthermore
the following distance estimates are satisfied:
etd0(x , y) ≥ dt(x , y) ≥ d0(x , y)− γ(3)

√
c0t,

for all x , y ∈ M , t ≥ s ∈ [0,T (v0)], where
dt(x , y) = dist(g(t))(x , y).
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An application: consider a pointed sequence
(M3

i , gi(0), pi) of initial (BC), (CMPL) Riemannian
manifolds satisfying these conditions, that is
a) (global non-collapsedness ) vol(Bgi (0)(x , 1)) ≥ v0
for all x ∈ Mi and
b) Rc(gi(0))(·) ≥ −1. Using the existence theorem
and the estimates contained in the statement of the
theorem, and the smooth convergence theorem of
Cheeger/Hamilton , we may let i go to infinity, and
we obtain (after taking a subsequence) a smooth
limiting solution defined for t ∈ (0, (T (v0)):
(M3, g(t), p) := limi→∞(Mi , gi(t), pi)t∈(0,T (v0)), the
limit being in the smooth Cheeger/Hamilton sense,
and the estimates carry over to the limit.
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(M3, g(t), p) := limi→∞(Mi , gi(t), pi)t∈(0,T (v0)), with

|Rm(·, t)| ≤ c0(v0)
t and the distance estimates hold.

The distance estimates guarantee that there is a
limit (X , dX , x∞) = limt↘0(M3, d(g(t)), p), with the
same topolgy as X , that is X is a manifold. The
compactness theorem of Gromov guarantees that
(after taking a subsequence) there is a
Gromov-Hausdorff Limit
(Z , dZ , z) := GHlimi→∞(Mi , d(gi(0)), pi). The
distance estimates, once again guarnatee that,
(X , dX , x∞) = (Z , dZ , z). That is Z must be a
topological manifold. This proves a weak version of
the conjecture of M. Anderson, J. Cheeger, T.
Colding, G. Tian. Weak because we assume global
non-collapsedness and BC.
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In recent works with Peter Topping, we show that
the full conjecture of Anderson, Cheeger, Colding,
Tian (ACCT Conjecture) is correct. The full
conjecture removes the condition (BC) and replaces
the global non-collapsedness condition by a non
collapsed in a point condition:
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Theorem 3 (Si.+ Topping, ’17)

Let (M3
i , gi(0)) be a sequence of complete (CMPL)

3-manifolds with
a) (non-collapsed in a point) vol(Bgi (0)(xi , 1)) ≥ v0
for some xi ∈ Mi and
b) Rc(gi(0)) ≥ −1.
Then a subsequence of
(M , d(gi(0)), xi)→ (X , dX , x∞) in the
Gromov-Hausdorff sense when i →∞, where
(X , dX , x∞) is a metric space, and X with the
topology induced by dX , is a topological 3-manifold.
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The proof of the full ACCT conjecture involves
(1) localising all of the Ricci flow estimates from Si.
’11 and
(2) constructing a local Ricci flow
(Bgi (0)(x0,R), gi(t))t∈[0,T (R,v0)] for each Ball
Bgi (0)(x0,R) ⊆ (Mi , gi(0)) and taking a limit as
i →∞ of each of these flows.
We rely on some earlier local estimates (Si.+
Topping ’16) and a construction of R. Hochard
(’16).Local Ricci flows were first considered by
Hochard, (’16).
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We only consider here the case of balls of radius
R = 4. The local Ricci flow result we obtain, is an
existence result with estimates
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Other results and open problems:
Shortly after the release of this paper, (’17), M.-C.
Lee and L.-F. Tam, proved an analogous result,
using the methods of Simon/Topping, estimates
from other papers (M.-C. Lee, L.-F. Tam, A. Chau,
C. Yu, S. Huang, ...), and new ideas/estimates, in
the case that (M2m, g0) is globally non-collapsed,
Kähler and has non-negative bisectional curvature
( Rm(·)(X , X̄ ,Y , Ȳ ) ≥ 0 for any X ,Y ∈ T 1,0

(·) M ).

They show that a Kähler Ricci flow solution
(M , g(t))t∈[0,T (v0,n)) exists and has non-negative

bi-sectional curvature and |Rm(·, t)| ≤ c0(v0,n)
t for

t ∈ [0,T (v0, n)).
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R. Bamler, B. Wilking, E. Cabezas-Rivas (’17)
showed using different methods (heat kernel
estimates and integral arguments), that analogous
results may be obtained for other curvature
quantities for all dimensions. In the following, I(g)
will refer to the curvature operator of the unit
sphere : I(g)ijkl = gikgjl − gilgjk
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Their assumptions are that g0 is globally
non-collapsed, and Rm(g0) + I(g0) is a (1)
non-negative curvature operator,(2) 2-non-negative
curvature operator and g0 is (BC), (3) non-negative
complex sectional curvature operator, (4) a weakly
PIC1 curvature operator and g0 is (BC) (5) is a
non-negative bisectional curvature operator and g0
is (BC) and Kähler w.r.t. to some complex struture
J . They show that a solution (M , g(t))t∈[0,T (v0,n))

exists with Rm(g(t)) + c0(v0, n)I(g(t)) is a
non-negative curvature operator in case (1), etc,

and one has |Rm(·, t)| ≤ c0(v0,n)
t .
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They do not construct local Ricci flows in their
proofs, hence the assumption (BC) in (2),(4),(5).
They achieved (1) and (3) without (BC), by making
a (specially chosen) conformal change, which keeps
the metric fixed on balls of radius R , and results in
a (BC) space whose curvature bound from below,
and the volume of balls of radius one, only changes
by a fixed (independent of R) constant factor.
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In a recent paper by Yi Lai (’18), the estimates and
methods of Bamler/Wilking/Cabezas-Rivas and the
methods of Simon/Topping, as well as new methods
and ideas, are used , and she was able to (a) remove
the (BC) condition from (2) and (4), and
(b) prove that the limiting spaces are manifolds, if
the global volume non-collapsing is replaced by
volume non-collapsed in a point.
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That is assuming vol(Bg(0)(x0, 1)) = v0 and
Bg(0)(x0, 1) satisfies (1),(2),(3),(4), Yi Lai
constructs a local Ricci flow solution
(Bg(0)(x0, 1), g(t))t∈[0,T (v0,n)] with

|Rm(·, t)| ≤ c0(v0,n)
t and Rm(g(t)) + c0(v0, n)I(g(t))

is a non-negative curvature operator in case (1), etc.
Open problem Can one construct a local Ricci flow
of this type in case (5) (Kähler and bi-sectional
curvature not less than minus one), with good
estimates, as in case (1)-(4).
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Theorem 4 (Si./Topping ’17: The Local Flow

Theorem)

Let (M3, g0) be smooth, x0 ∈ M , Bg0(x0, 4) ⊂⊂ M ,
such that

Rc(g0) ≥ −1 on Bg0(x0, 4)

vol(Bg0(x0, 4)) ≥ v0.

Then there exists a S = S(v0, n), c0(v0, n) and a
solution (Bg0(x0, 1), g(t))t∈[0,S ] to (RF) such that

Rc(g(t)) ≥ −c0
|Rm(g(t))| ≤ c0

t
for all t ∈ [0, S ].
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R. Hochard ’16 proved a similar result, obtaining
Rc(g(t)) ≥ −1

t in place of Rc(g(t)) ≥ −c0.
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Using the estimates + Lemmata in this talk +
Pseudolocality estimate (vn. 1) of Perelman, one
can show a local Pseudolocality type Theorem in a
Ricci setting for n = 3 .
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Theorem 5 (Si./Topping ’17)

Let (M3, g(t))t∈[0,T ] be a smooth (BC), (CMPL)
solution to (RF), x0 ∈ M , and

Rc(g0) ≥ −1 on Bg0(x0, 4)

vol(Bg0(x0, 4)) ≥ v0.

Then there exists a S = S(v0, n), c0(v0, n) such that

Rc(g(t)) ≥ −c0
|Rm(g(t))| ≤ c0

t

for all t ∈ [0, S ] ∩ [0,T ] on Bg(t)(x0, 1)
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Once again, R. Hochard ’16 proved a similar result,
obtaining Rc(g(t)) ≥ −1

t in place of
Rc(g(t)) ≥ −c0.
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Open Problem: Do local results of this type exist for
the other curvature conditions mentioned?
Open Problem: Can one remove the (BC) condition?
Note: For n = 2 we can remove (BC) and (CMPL)
if we include Bg(t)(x0, 4) ⊂⊂ M for all t ∈ [0,T ]
(Si. ’13).
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The proof of the distance estimates of Si. ’11 is
local: if |Rm|(·, t) ≤ c0

t and Rc(g(t)) ≥ −1 on
Bg(t)(1, x0) and Bg(t)(1, x0) ⊂⊂ N for all t ∈ [0,T ),
for a not necessarily CMPL solution
(N , g(t))t∈[0,T ) then

etd0(x , y) ≥ dt(x , y) ≥ d0(x , y)− γ(n)
√
c0t

for all x , y ∈ Bg(t)(x0,
1
4), t ∈ [0,T (c0)]. In ’17

(joint work with Peter Topping), we proved the
following improvement of this:

etd0(x , y) ≥ dt(x , y) ≥ d0(x , y)− γ(n)
√
c0t, and

dt(x , y) ≥ β(n, c0)[d0(x , y)]1+2(n−1)c0.

for all x , y ∈ Bg(t)(x0,
1
4), t ∈ [0,T (c0)].
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Assuming |Rm(·, t)| ≤ c0
t and Rc(g(t)) ≥ −g(t)

(everywhere), the distance estimates of Si./Topping
’17 are shown as follows.
For a curve γ : [0, r ]→ M , the length of γ with
respect to g(t) is

Lg(t)(γ) :=
∫ r

0

√
g(t)(dγds (s), dγds (s))ds. Using

∂
∂tg(t)e−2t = −2Rc(g(t))− 2g(t) ≤ 0 , we see

that ∂
∂t (e−tLg(t)(γ)) ≤ 0 and hence, integrating in

time, Lg(t)(γ) ≤ etLg(0)(γ) which implies
dt(x , y) ≤ etd0(x , y).
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The other estimate is obtained as follows. At times
t where the (Lipschitz in time) function
dt(x , y) = Lg(t)(γ) is differentiable, there exists a
length minimising geodesic γ (w.r.t to t ) from x to
y such that d

dtdt(x , y) ≥ d
dtLg(t)(γ) =∫ r

0 −Rc(g(t))(dγds (s), dγds (s))ds [Hamilton’s Integral
version of Myers’ Theorem:]

≥ −γ(n)
√

supM |Rm(g(t)| ≥ −γ(n)
√
c0√
t

.

Integrating in time from t = 0 to
t ≤ t1 := 1

c0
[ 1
2γd0(x , y)]2 < 1 implies

dt(x , y) ≥ 1
2d0(x , y).



35

Now using Rc ≤ (n−1)c0
t for t ≥ t1 we get

d
dtdt(x , y) ≥

∫ r

0 −Rc(g(t))(dγds (s), dγds (s))ds

≥ −dt(x , y) (n−1)c0t . Integrating from t = t1 to t ≤ 1

gives dt(x , y) ≥ dt1(x , y)[ tt1 ]−(n−1)c0

≥ dt1(x , y)t
(n−1)c0
1

≥ 1
2d0(x , y)t

(n−1)c0
1 = β(c0, n)[d0(x , y)]1+2(n−1)c0 as

required.



36

We write down the three main local results that we
need, to construct our local Ricci flow.
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Lemma 6 (Local Lemma Si. + Topping ’16 )

Let (N3, g(t))t∈[0,T ] be a smooth Ricci flow such
that for some fixed x ∈ N we have
Bg(t)(x0, 1) ⊂⊂ N for all t ∈ [0,T ], and so that
(i) vol(Bg(0)(x0, 1)) ≥ v0 > 0, and
(ii) Rcg(t) ≥ −1 on Bg(t)(x0, 1) for all t ∈ [0,T ].
Then there exist C0 = C0(v0) ≥ 1 and

T̂ = T̂ (v0) > 0 such that |Rm|g(t)(·) ≤ C0/t, and

injg(t)(·) ≥
√
t/C0 on Bg(t)(x0,

1
2) for all

0 < t ≤ min(T̂ ,T ).
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The proof is almost the same as the proof given in
Si. ’11, which is, as closer examination shows, a
local argument: Assuming the injectivity radius
estimate, the curvature estimate is proved using an
argument by contradiction: After scaling our
contradiction sequence of solutions appropriately, we
obtain as a limit a smooth, ancient (defined for
t ∈ (−∞, 0]), non-compact, smooth (BC, CMPL),
non-trivial solution, with Euclidean volume growth
and sec ≥ 0 everywhere (D. Knopf/B. Chow n = 3
and (BC), B.-L. Chen, n = 3). A Theorem of
Perleman says such solutions don’t exist.
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Using the curvature estimate, we show that the
injectivity radius estimate does indeed hold: A
theorem of Cheeger+Colding (’97) [ volume is
continuous under convergence of metric spaces
(Cheeger+ Colding, ’97) , as long as Ricci curvature
stays bounded from below]+ local distance
estimates (as explained above) + curvature
estimate imply the injectivity radius estimate.
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Note that the results of
Bamler/Wilking/Cabezas-Rivas, Lee/Tam..., all use
a local lemma proved for the curvature condition
they consider. The proofs are similar to the one just
given, except that the theorem of Perelman is in
each case replaced by an analogous theorem for the
curvature condition being considered (for example in
the bisectional curvature case, such a Theorem is
provided by L. Ni).



41

The second lemma we need is:

Lemma 7 (cf. Double Bootstrap DB Lemma

Si.+Topping ’16)

Let (N3, g(t))t∈[0,T ] be a smooth Ricci flow, and
x0 ∈ N , such that Bg(0)(x0, 2) is compactly
contained in N and so that throughout Bg(0)(x0, 2)
we have
i) |Rm|g(t) ≤ c0

t for some c0 ≥ 1 and all t ∈ (0,T ],
and
ii) Rcg(0) ≥ −δ0 for some δ0 > 0.

Then there exists Ŝ = Ŝ(c0, δ0) > 0 such that

Rcg(t) ≥ −100δ0c0 for all 0 ≤ t ≤ min(Ŝ ,T ) on
Bg(t)(x0, 1)
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Notes on the proof:Our proof involves two steps:
Step 1. We consider the evolution of the function
F (x , t) :=
η(x , t)Rc(x , t) + [8δ0R(x , t)tα + tε + 7δ0]g(x , t) for
some carefully chosen α, ε ∈ (0, 1), where η is a
time evolving cut-off function, with η(·) ∈ [0, 1]
η(·) = 1 on Bg(t)(x0, 3/2) and η(·) = 0 on
Bg(t)(x0, 7/4). The maximum principle applied to
the evolution equation of F shows us that F > 0 on
[0,T ].
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Step 2. consider
F := η(x , t)Rc(x , t) + [8δ0R(x , t)t + tε+ 7δ0]g(x , t)
(η a cut off on a smaller ball),and use the maximum
principle again, with the help of the estimate proved
above , to show that this new F also never reaches
zero. This implies the result. In both steps an
analysis of the term G in the equation
∂
∂tF = ∆gF + G at a first time and point where F
potentially has a zero direction is the decisive part
of the proof, and is a lengthy algebraic calculation.
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The third Lemma we need is a Lemma of R.
Hochard, which explains how to conformally change
a non-complete Riemannian manifold with
unbounded curvature into a complete, non-compact
Riemannian manifold of bounded curvature, without
changing a region which we wish to preserve.
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Lemma 8 (Conformal Lemma,Hochard ’16)

Let (Nn, g) be a smooth (not necessarily complete)
Riemannian manifold and let U ⊂ N be an open
set. Assume that for some ρ ∈ (0, 1], we have
supU |Rm|g ≤ ρ−2, Bg(x , ρ) ⊂⊂ N and injg(x) ≥ ρ
for all x ∈ U .Then there exist a constant
γ = γ(n) ≥ 1, an open set Ũ ⊂ U and a smooth
metric g̃ defined on Ũ such that each connected
component of (Ũ , g̃) is a complete Riemannian
manifold satisfying
i) supŨ |Rm|g̃ ≤ γρ−2

ii) U2ρ ⊂ Ũ ⊂ U
iii) g̃ = g on U2ρ, where
U2ρ = {x ∈ U | Bg(x , 2ρ) ⊂⊂ U}.
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Idea : Consider the distance function from the
boundary of U and mollify this (similar to a method
by Cheeger/Gromov ’Chopping Riemannian
manifolds’). Then using this smooth function, the
strategy of Hochard to prove this lemma is to
conformally blow up the metric in a neighbourhood
of the boundary of U so that it looks essentially
hyperbolic. A similar procedure was used by P.
Topping in the case that n = 2.
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With these ingredients, we are ready to construct a
local Ricci-Flow. We recall the three Lemma:
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Local Lemma: v0 > 0 with
vol(Bg(0)(x0, 2)) ≥ v0 > 0, and Rcg(t) ≥ −1 on
Bg(t)(x0, 2) for all t ∈ [0,T ]

=⇒ |Rm|g(t)(·) ≤ C0(v0)
t and injg(t)(·) ≥

√
t√
C0

on

Bg(t)(x0, 1) for 0 < t ≤ min(T̂ (v0),T ).
DB Lemma: c0, δ0 > 0 given with |Rm|g(t) ≤ c0

t for
t ∈ (0,T ], and Rcg(0) ≥ −δ0 on Bg(0)(x0, 2)
=⇒ Rcg(t)(·)) ≥ −100δ0c0 on Bg(t)(x0, 1) for

t ≤ Ŝ = Ŝ(c0, δ0) > 0.
Hochard’s Conformal Lemma: Conformally modify
regions (Ω, g) with bounded geometry to get (Ω̃, g̃)

with Ω̂ ⊆ Ω̃ ⊆ Ω and g = g̃ on Ω̂ and (Ω̃, g) is
complete with bounded geometry with similar
bounds to (Ω, g).
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Getting set up
a) W.l.o.g. Rc(g0) ≥ −α0 on Bg0(x0, 3),
0 < α0 << 1: if not, scale once at t = 0
b) W.l.o.g. (M , g0) has (BC):
If not , apply the Conformal Lemma, keeping g0
unchanged on Bg0(x0,

5
2).

c) W.l.o.g vol(Bg(0)(x , r)) ≥ v0r
3 for x ∈ Bg0(x0,

5
2)

due to Bishop-Gromov (here v0 may decrease by a
constant factor).
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d) Ricci flow of (M , g0) gives us a (Hamilton/Shi)
smooth (BC) solution (M , g(t))t∈[0,t1] for some

small t1 > 0. W.l.o.g |Rm(·, t)| ≤ γ(3)C0(v0)
t for

t ∈ [0, t1], where γ = γ(3) is a constant (to be
determined later): the smoothness of the (BC)
solution guarantees this.
e) In the following, the distance estimates explained
at the beginning will guarantee that dt ∼ d0 +

√
at

where a = a(v0), since we will always have

|Rm(·, t)| ≤ K (v0)
t . All constants

a(v0), a0(v0), a1(v0), . . . , a5(v0) are positive and
depend only on v0.
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The iteration procedure (analagous to an iteration
procedure used by Hochard ’16.) We begin with a
smooth solution (local) defined on
(Bg(0)(x0, r1 := 2− a4

√
t1), g(t))t∈[0,t1] such that

|Rm(·, t)| ≤ γ(n)C0(v0)
t for t ∈ [0, t1] and a smooth

(N1, g(t1)) which is (BC) and (CMPL) (N1 = M)
with Bg(0)(x0, r1) ⊂⊂ M and

|Rm(g(·, t1))| ≤ γ C0(v0)
t1

.
We will construct a local smooth solution defined
on (Bg(0)(x0, r2 := r1 − a4

√
t2), g(t))t∈[0,t2] where

t2 = (1 + ε0(v0))t1 for an ε0(v0) > 0, such that

|Rm(·, t)| ≤ γ C0(v0)
t for t ∈ [0, t2] and a smooth

(N2, g(t2)) which is (BC) and (CMPL) with

Bg0(x0, r2) ⊂⊂ N2 and |Rm(g(·, t2)| ≤ γ C0(v0)
t2

.
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Repeating the iteration procedure i times, we get
ti = (1 + ε0)i−1t1, and we have shrunk the radius to

ri = 2− a4
∑i

j=1

√
tj=

2− a4
√
ti(1 + 1√

1+ε0
+ . . . + 1√

1+ε0
i−1 )

≥ 2− a4
√
tiL0(v0). Hence if we choose i large ( t1

is small) to be the last i for which,
√
ti ≤ 1

a4L0
, then

we get ti = ti+1

1+ε0
> T (v0) := 1

(1+ε0)(a4L0)2
and the

flow is defined for t ∈ [0,T (v0)] on a ball of radius
≥ 2− a4

√
tiL0(v0) ≥ 2− 1 = 1, as required.
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The details of the iteration procedure
Step 1. Flow (N = N1, g(t1)) with the
Hamilton/Shi result: we obtain a solution
(N , g(t))t∈[t1,(1+ε0(v0))t1=:t2] with |Rm(·, t)| ≤ 4γC0

t2

for all t ∈ [t1, t2], and hence |Rm(·, t)| ≤ 4γC0

t for
all t ∈ [0, t2] on Bg(0)(x0, r1)
Step 2 (Scaled vn. of) the DB Lemma =⇒
Rc(g(·, t)) ≥ −100α04C0γ >> −1 on
Bg0(x0, r1 − a1(v0)

√
t2) for t ∈ [0, t2].

Step 3 (Scaled vn. of) the Local Lemma =⇒
|Rm(·, t)| ≤ C0

t and inj(g(t))(·) ≥
√

t
C0

on

Bg0(x0, r1 − a2(v0)
√
t2) for t ∈ [0, t2].
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Step 4 The Conformal Lemma applied to
(Bg(0)(x0, r1 − a2

√
t2), g(t2)) leads to a smooth

(CMPL), (BC) (N2, g(t2)) where g(t2) is the
original one (unchanged) on Bg(0)(x0, 2− a3

√
t2)

with |Rm(·, t2)| ≤ γC0

t2
and a local solution

(Bg(0)(x0, 2− a4
√
t2), g(t))t∈[0,t2] with

Bg(0)(x0, 2− a4
√
t2) ⊂⊂ N2.
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In fact, we see in the iteration procedure, that we
can only do this procedure as long as
ti ≤ T̂ (v0), Ŝ(v0) appearing in the the statement of
the DB Lemma resp. Local Lemma. This is a
further, non-harmful, constraint on the time.
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Also, our proof gives us more than the ACCT
conjecture. Using the Hölder distance estimates
explained above, we get...
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Theorem 9 (ACCT Si.+Topping ’17)

Given (M3
i , gi , yi) CMPL such that (i)Rcgi ≥ −1

on Mi and (ii) vol(Bgi (yi , 1)) ≥ v0 > 0. Then there
exist a three-dimensional topological manifold M
and a metric d : M ×M → [0,∞) generating the
same topology as M and making (M , d) a complete
metric space, such that after passing to a
subsequence, we have (Mi , dgi , yi)→ (M , d , y0) in
the pointed Gromov-Hausdorff sense, for some
y0 ∈ M , and...
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For any Bd(y0,R) ⊂ M we can find α < 1, C > 0
depending on R and v0 and maps
ϕi : Bd(y0,R)→ Mi which are homeomorphisms
onto their images, such that each ϕi is an ε(i)
Gromov-Hausdorff approximation, with ε(i)→ 0 as
i →∞ which is Hölder in the following sense:

1

C
d

1
α

i (ϕi(x), ϕi(y)) ≤ d(x , y) ≤ Cdαi (ϕi(x), ϕi(y)) (1)
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Open problem Can one construct a local Ricci flow
of this type in case (5) (Kähler and bi-sectional
curvature not less than minus one), with good
estimates, as in case (1)-(4).
Open Problem: Do local Pseudolocality results of
this type exist for the other curvature conditions
mentioned?
Open Problem: Can one remove the (BC) condition
in the 3d Pseudolocality result?
Note: For n = 2 we can remove (BC) and (CMPL)
if we include Bg(t)(x0, 4) ⊂⊂ M for all t ∈ [0,T ]
(Si. ’13).


